Let \$\Delta\$ be a dual polar space of rank \$n \geq 4\$, \$H\$ be a hyperplane of \$\Delta\$ and \$\Gamma: = \Delta\setminus H\$ be the complement of \$H\$ in \$\Delta\$. We shall prove that, if all lines of \$\Delta\$ have more than \$3\$ points, then \$\Gamma\$ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.

Cardinali, I., De, B., & Pasini, (2006). The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 26, 15-20 [10.1016/j.endm.2006.08.003].

### The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4

#### Abstract

Let \$\Delta\$ be a dual polar space of rank \$n \geq 4\$, \$H\$ be a hyperplane of \$\Delta\$ and \$\Gamma: = \Delta\setminus H\$ be the complement of \$H\$ in \$\Delta\$. We shall prove that, if all lines of \$\Delta\$ have more than \$3\$ points, then \$\Gamma\$ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.
##### Scheda breve Scheda completa Scheda completa (DC) Cardinali, I., De, B., & Pasini, (2006). The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 26, 15-20 [10.1016/j.endm.2006.08.003].
File in questo prodotto:
File
ENDM467.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 282.41 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `http://hdl.handle.net/11365/11858`