Let $\Delta$ be a dual polar space of rank $n \geq 4$, $H$ be a hyperplane of $\Delta$ and $\Gamma: = \Delta\setminus H$ be the complement of $H$ in $\Delta$. We shall prove that, if all lines of $\Delta$ have more than $3$ points, then $\Gamma$ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.

Cardinali, I., De, B., & Pasini, (2006). The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 26, 15-20 [10.1016/j.endm.2006.08.003].

The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4

CARDINALI, ILARIA;
2006

Abstract

Let $\Delta$ be a dual polar space of rank $n \geq 4$, $H$ be a hyperplane of $\Delta$ and $\Gamma: = \Delta\setminus H$ be the complement of $H$ in $\Delta$. We shall prove that, if all lines of $\Delta$ have more than $3$ points, then $\Gamma$ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.
Cardinali, I., De, B., & Pasini, (2006). The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 26, 15-20 [10.1016/j.endm.2006.08.003].
File in questo prodotto:
File Dimensione Formato  
ENDM467.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 282.41 kB
Formato Adobe PDF
282.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/11858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo