Let $\Delta$ be a dual polar space of rank $n \geq 4$, $H$ be a hyperplane of $\Delta$ and $\Gamma: = \Delta\setminus H$ be the complement of $H$ in $\Delta$. We shall prove that, if all lines of $\Delta$ have more than $3$ points, then $\Gamma$ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.
Cardinali, I., De, B., Pasini, (2006). The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 26, 15-20 [10.1016/j.endm.2006.08.003].
The simple connectedness of hyperplane complements in thick dual polar spaces of rank at least 4
CARDINALI, ILARIA;
2006-01-01
Abstract
Let $\Delta$ be a dual polar space of rank $n \geq 4$, $H$ be a hyperplane of $\Delta$ and $\Gamma: = \Delta\setminus H$ be the complement of $H$ in $\Delta$. We shall prove that, if all lines of $\Delta$ have more than $3$ points, then $\Gamma$ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.File | Dimensione | Formato | |
---|---|---|---|
ENDM467.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
282.41 kB
Formato
Adobe PDF
|
282.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/11858
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo