Nonlinear dynamic memory elements, as memristors, memcapacitors, and meminductors (also known as mem-elements), are of paramount importance in conceiving the neural networks, mem-computing machines, and reservoir computing systems with advanced computational primitives. This paper aims to develop a systematic methodology for analyzing complex dynamics in nonlinear networks with such emerging nanoscale mem-elements. The technique extends the flux-charge analysis method (FCAM) for nonlinear circuits with memristors to a broader class of nonlinear networks N containing also memcapacitors and meminductors. After deriving the constitutive relation and equivalent circuit in the flux-charge domain of each two-terminal element in N, this paper focuses on relevant subclasses of N for which a state equation description can be obtained. On this basis, salient features of the dynamics are highlighted and studied analytically: 1) the presence of invariant manifolds in the autonomous networks; 2) the coexistence of infinitely many different reduced-order dynamics on manifolds; and 3) the presence of bifurcations due to changing the initial conditions for a fixed set of parameters (also known as bifurcations without parameters). Analytic formulas are also given to design nonautonomous networks subject to pulses that drive trajectories through different manifolds and nonlinear reduced-order dynamics. The results, in this paper, provide a method for a comprehensive understanding of complex dynamical features and computational capabilities in nonlinear networks with mem-elements, which is fundamental for a holistic approach in neuromorphic systems with such emerging nanoscale devices.

Corinto, F., Di Marco, M., Forti, M., Chua, L. (2020). Nonlinear Networks with Mem-Elements: Complex Dynamics via Flux-Charge Analysis Method. IEEE TRANSACTIONS ON CYBERNETICS, 50(11), 4758-4771 [10.1109/TCYB.2019.2904903].

Nonlinear Networks with Mem-Elements: Complex Dynamics via Flux-Charge Analysis Method

Di Marco M.;Forti M.
;
2020-01-01

Abstract

Nonlinear dynamic memory elements, as memristors, memcapacitors, and meminductors (also known as mem-elements), are of paramount importance in conceiving the neural networks, mem-computing machines, and reservoir computing systems with advanced computational primitives. This paper aims to develop a systematic methodology for analyzing complex dynamics in nonlinear networks with such emerging nanoscale mem-elements. The technique extends the flux-charge analysis method (FCAM) for nonlinear circuits with memristors to a broader class of nonlinear networks N containing also memcapacitors and meminductors. After deriving the constitutive relation and equivalent circuit in the flux-charge domain of each two-terminal element in N, this paper focuses on relevant subclasses of N for which a state equation description can be obtained. On this basis, salient features of the dynamics are highlighted and studied analytically: 1) the presence of invariant manifolds in the autonomous networks; 2) the coexistence of infinitely many different reduced-order dynamics on manifolds; and 3) the presence of bifurcations due to changing the initial conditions for a fixed set of parameters (also known as bifurcations without parameters). Analytic formulas are also given to design nonautonomous networks subject to pulses that drive trajectories through different manifolds and nonlinear reduced-order dynamics. The results, in this paper, provide a method for a comprehensive understanding of complex dynamical features and computational capabilities in nonlinear networks with mem-elements, which is fundamental for a holistic approach in neuromorphic systems with such emerging nanoscale devices.
2020
Corinto, F., Di Marco, M., Forti, M., Chua, L. (2020). Nonlinear Networks with Mem-Elements: Complex Dynamics via Flux-Charge Analysis Method. IEEE TRANSACTIONS ON CYBERNETICS, 50(11), 4758-4771 [10.1109/TCYB.2019.2904903].
File in questo prodotto:
File Dimensione Formato  
Nonlinear_Networks_With_Mem-Elements_Complex_Dynamics_via_FluxCharge_Analysis_Method.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1175549