This paper introduces bootstrap error estimation for automatic tuning of parameters in combined networks, applied as front-end preprocessors for a speech recognition system based on hidden Markov models. The method is evaluated on a large-vocabulary (10 000 words) continuous speech recognition task. Bootstrap estimates of minimum mean squared error allow selection of speaker normalization models improving recognition performance. The procedure allows a flexible strategy for dealing with inter-speaker variability without requiring an additional validation set. Recognition results are compared for linear, generalized radial basis functions and multi-layer perceptron network architectures.
Cesare, F., Diego, G., Trentin, E., Stefano, M. (1997). Speaker normalization and model selection of combined neural networks. CONNECTION SCIENCE, 9(1), 31-50 [10.1080/095400997116720].
Speaker normalization and model selection of combined neural networks
TRENTIN, EDMONDO;
1997-01-01
Abstract
This paper introduces bootstrap error estimation for automatic tuning of parameters in combined networks, applied as front-end preprocessors for a speech recognition system based on hidden Markov models. The method is evaluated on a large-vocabulary (10 000 words) continuous speech recognition task. Bootstrap estimates of minimum mean squared error allow selection of speaker normalization models improving recognition performance. The procedure allows a flexible strategy for dealing with inter-speaker variability without requiring an additional validation set. Recognition results are compared for linear, generalized radial basis functions and multi-layer perceptron network architectures.File | Dimensione | Formato | |
---|---|---|---|
01-FurlanelloGiulianiTrentinMerler.pdf
non disponibili
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
366.06 kB
Formato
Adobe PDF
|
366.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/11709
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo