Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high-energy cosmic rays (UHECRs) with energies reaching up to ∼1020 eV. Based on this conjecture, the possibility of UHECR acceleration and survival in an FR 0 source environment is examined in this work. In doing so, an average spectral energy distribution (SED) based on data from the FR 0 catalog (FR0CAT) is compiled. The resulting photon fields are used as targets for UHECRs, which suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. Multiple mechanisms are discussed to assess the UHECR acceleration probability, including Fermi-I order and gradual shear accelerations, and particle escape from the source region. This work shows that in a hybrid scenario, combining Fermi and shear accelerations, FR 0 galaxies can contribute to the observed UHECR flux, as long as Γj≳1.6, where shear acceleration starts to dominate over escape. Even in less optimistic scenarios, FR 0s can be expected to contribute to the cosmic-ray flux between the knee and the ankle. Our results are relatively robust with respect to the realized magnetic turbulence model and the speed of the accelerating shocks.

Merten, L., Boughelilba, M., Reimer, A., Da Vela, P., Vorobiov, S., Tavecchio, F., et al. (2021). Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidates. ASTROPARTICLE PHYSICS, 128 [10.1016/j.astropartphys.2021.102564].

Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidates

Da Vela, P.;Bonnoli, G.
Membro del Collaboration Group
;
Righi, C.
2021-01-01

Abstract

Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high-energy cosmic rays (UHECRs) with energies reaching up to ∼1020 eV. Based on this conjecture, the possibility of UHECR acceleration and survival in an FR 0 source environment is examined in this work. In doing so, an average spectral energy distribution (SED) based on data from the FR 0 catalog (FR0CAT) is compiled. The resulting photon fields are used as targets for UHECRs, which suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. Multiple mechanisms are discussed to assess the UHECR acceleration probability, including Fermi-I order and gradual shear accelerations, and particle escape from the source region. This work shows that in a hybrid scenario, combining Fermi and shear accelerations, FR 0 galaxies can contribute to the observed UHECR flux, as long as Γj≳1.6, where shear acceleration starts to dominate over escape. Even in less optimistic scenarios, FR 0s can be expected to contribute to the cosmic-ray flux between the knee and the ankle. Our results are relatively robust with respect to the realized magnetic turbulence model and the speed of the accelerating shocks.
2021
Merten, L., Boughelilba, M., Reimer, A., Da Vela, P., Vorobiov, S., Tavecchio, F., et al. (2021). Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidates. ASTROPARTICLE PHYSICS, 128 [10.1016/j.astropartphys.2021.102564].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0927650521000086-main(1).pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 4.36 MB
Formato Adobe PDF
4.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1157518