Introduction: The term ‘orphan diseases’ includes conditions meeting prevalence-based or commercial viability criteria: they affect a small number of individuals and are considered an unviable market for drug development. Proteomics is an important technology to study them, providing information on mechanisms and evolution, biomarkers, and effects of therapeutic interventions. Areas covered: Herein, we review how proteomics and bioinformatic tools could be applied to the study of rare diseases and discuss pitfalls and potential. Expert opinion: Research in the field of rare diseases has to face many challenges, and implementation plans should foresee highly specialized collaborative consortia to create multidisciplinary frameworks for data sharing, advancing research, supporting clinical studies, and accelerating drug development. The integration of different technologies will allow better knowledge of disease pathophysiology, and the inclusion of proteomics and other omics technologies in this context will be pivotal to this aim. Several aspects of rare diseases, often perceived as limiting factors, might actually be advantages for a precision medicine approach: the limited number of patients, the collaboration with patient societies, and the availability of curated clinical registries could allow the development of homogeneous clinical databases and ultimately a better control over the data to be analyzed.
Braconi, D., Bernardini, G., Spiga, O., Santucci, A. (2021). Leveraging proteomics in orphan disease research: pitfalls and potential. EXPERT REVIEW OF PROTEOMICS, 18(4), 315-327 [10.1080/14789450.2021.1918549].
Leveraging proteomics in orphan disease research: pitfalls and potential
Braconi D.;Bernardini G.;Spiga O.;Santucci A.
2021-01-01
Abstract
Introduction: The term ‘orphan diseases’ includes conditions meeting prevalence-based or commercial viability criteria: they affect a small number of individuals and are considered an unviable market for drug development. Proteomics is an important technology to study them, providing information on mechanisms and evolution, biomarkers, and effects of therapeutic interventions. Areas covered: Herein, we review how proteomics and bioinformatic tools could be applied to the study of rare diseases and discuss pitfalls and potential. Expert opinion: Research in the field of rare diseases has to face many challenges, and implementation plans should foresee highly specialized collaborative consortia to create multidisciplinary frameworks for data sharing, advancing research, supporting clinical studies, and accelerating drug development. The integration of different technologies will allow better knowledge of disease pathophysiology, and the inclusion of proteomics and other omics technologies in this context will be pivotal to this aim. Several aspects of rare diseases, often perceived as limiting factors, might actually be advantages for a precision medicine approach: the limited number of patients, the collaboration with patient societies, and the availability of curated clinical registries could allow the development of homogeneous clinical databases and ultimately a better control over the data to be analyzed.File | Dimensione | Formato | |
---|---|---|---|
Leveraging proteomics in orphan disease research pitfalls and potential-Braconi-2021.pdf
non disponibili
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1146176