Introduction: The short arm of chromosome 17 is characterized by a high density of low copy repeats, creating the opportunity for non-allelic homologous recombination to occur. Microdeletions of the 17p13.3 region are responsible for neuronal migration disorders including isolated lissencephaly sequence and Miller-Dieker syndrome. Case report: We describe the case of a 4-year and 2-month-old female with peculiar somatic traits and neurodevelopmental delay. At the age of 6 months, she started to present with infantile spasms syndrome; therefore, we administered vigabatrin followed by two cycles of adrenocorticotropic hormone, with good response. The coexistence of epileptic activity, neuropsychological delay, brain imaging abnormalities, and peculiar somatic features oriented us towards the hypothesis of a genetic etiology that could explain her clinical picture. Array CGH identified a 730 Kb deletion in the p13.3 region of the short arm of chromosome 17 including eleven genes, among these are YWHAE and CRK. Discussion: Microdeletions of the 17p13.3 region involving only YWHAE and CRK, sparing PAFAH1B1, result in neurodevelopmental delay, growth retardation, craniofacial dysmorphisms, and mild structural brain abnormalities. Differently from the previously described patients carrying YWHAE and CRK deletions, the main complaint of our patient was represented by seizures. The absence of clear neuronal migration defects and mutations of the PAFAH1B1 gene in our patient underlines the central role of additional genes located in the 17p13.3 chromosomal region in the pathogenesis of epilepsy and helps to expand the phenotype of 17p13.3 microdeletion syndrome.

Romano, C., Ferranti, S., Mencarelli, M.A., Longo, I., Renieri, A., Grosso, S. (2020). 17p13.3 microdeletion including YWHAE and CRK genes: towards a clinical characterization. NEUROLOGICAL SCIENCES, 41(8), 2259-2262 [10.1007/s10072-020-04424-3].

17p13.3 microdeletion including YWHAE and CRK genes: towards a clinical characterization

Ferranti S.;Longo I.;Renieri A.;Grosso S.
2020-01-01

Abstract

Introduction: The short arm of chromosome 17 is characterized by a high density of low copy repeats, creating the opportunity for non-allelic homologous recombination to occur. Microdeletions of the 17p13.3 region are responsible for neuronal migration disorders including isolated lissencephaly sequence and Miller-Dieker syndrome. Case report: We describe the case of a 4-year and 2-month-old female with peculiar somatic traits and neurodevelopmental delay. At the age of 6 months, she started to present with infantile spasms syndrome; therefore, we administered vigabatrin followed by two cycles of adrenocorticotropic hormone, with good response. The coexistence of epileptic activity, neuropsychological delay, brain imaging abnormalities, and peculiar somatic features oriented us towards the hypothesis of a genetic etiology that could explain her clinical picture. Array CGH identified a 730 Kb deletion in the p13.3 region of the short arm of chromosome 17 including eleven genes, among these are YWHAE and CRK. Discussion: Microdeletions of the 17p13.3 region involving only YWHAE and CRK, sparing PAFAH1B1, result in neurodevelopmental delay, growth retardation, craniofacial dysmorphisms, and mild structural brain abnormalities. Differently from the previously described patients carrying YWHAE and CRK deletions, the main complaint of our patient was represented by seizures. The absence of clear neuronal migration defects and mutations of the PAFAH1B1 gene in our patient underlines the central role of additional genes located in the 17p13.3 chromosomal region in the pathogenesis of epilepsy and helps to expand the phenotype of 17p13.3 microdeletion syndrome.
2020
Romano, C., Ferranti, S., Mencarelli, M.A., Longo, I., Renieri, A., Grosso, S. (2020). 17p13.3 microdeletion including YWHAE and CRK genes: towards a clinical characterization. NEUROLOGICAL SCIENCES, 41(8), 2259-2262 [10.1007/s10072-020-04424-3].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1133698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo