In an attempt to alleviate salt-induced damage, the application of ZnO nanoparticles has been suggested. As the use of these particles has also been associated with phytotoxicity, to better clarify the effect of zinc and its possible mitigation of salt stress, we treated wheat seedlings with ZnO (nanoparticles or their bulk-scale counterparts, amended either in the growth medium, NPs and B, or sprayed on the leaves, SPNPs and SPB) with or without subsequent treatment with salt. Growth, photosynthetic parameters, zinc and ion concentration, and in situ and biochemical determination of oxidative stress in wheat leaves and/or in roots were considered. Both Zn and NaCl significantly inhibited growth and induced severe alterations in root morphology. Oxidative stress and damage decreased or increased under ZnO treatment and in saline conditions depending on the organ and on the size and mode of application of particles. In spite of the higher stress conditions often recorded in treated leaves, neither pigment concentration nor photochemical efficiency were decreased. A large variability in the effects of ZnO treatment/priming on seedling salt response was recorded; however, the presence of a cumulative negative effect of priming and salt stress sometimes observed calls for caution in the use of ZnO in protection from saline stress.
Spano, C., Bottega, S., Bellani, L., Muccifora, S., Sorce, C., Castiglione, M. (2020). Effect of zinc priming on salt response of wheat seedlings: Relieving or worsening?. PLANTS, 9(11) [10.3390/plants9111514].
Effect of zinc priming on salt response of wheat seedlings: Relieving or worsening?
Bellani, L.;Muccifora, S.;
2020-01-01
Abstract
In an attempt to alleviate salt-induced damage, the application of ZnO nanoparticles has been suggested. As the use of these particles has also been associated with phytotoxicity, to better clarify the effect of zinc and its possible mitigation of salt stress, we treated wheat seedlings with ZnO (nanoparticles or their bulk-scale counterparts, amended either in the growth medium, NPs and B, or sprayed on the leaves, SPNPs and SPB) with or without subsequent treatment with salt. Growth, photosynthetic parameters, zinc and ion concentration, and in situ and biochemical determination of oxidative stress in wheat leaves and/or in roots were considered. Both Zn and NaCl significantly inhibited growth and induced severe alterations in root morphology. Oxidative stress and damage decreased or increased under ZnO treatment and in saline conditions depending on the organ and on the size and mode of application of particles. In spite of the higher stress conditions often recorded in treated leaves, neither pigment concentration nor photochemical efficiency were decreased. A large variability in the effects of ZnO treatment/priming on seedling salt response was recorded; however, the presence of a cumulative negative effect of priming and salt stress sometimes observed calls for caution in the use of ZnO in protection from saline stress.File | Dimensione | Formato | |
---|---|---|---|
Zinc 2020 plants.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1120963