Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine-layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs.

Acciari, V.a., Ansoldi, S., Antonelli, L.a., Engels, A.a., Asano, K., Baack, D., et al. (2020). New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 247(1) [10.3847/1538-4365/ab5b98].

New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes

Bellizzi, L;Bonnoli, G;Da Vela, P;De Angelis, A;Guberman, D;Ninci, D;Paoletti, R;Rugliancich, A;Stamerra, A;
2020-01-01

Abstract

Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine-layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs.
2020
Acciari, V.a., Ansoldi, S., Antonelli, L.a., Engels, A.a., Asano, K., Baack, D., et al. (2020). New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 247(1) [10.3847/1538-4365/ab5b98].
File in questo prodotto:
File Dimensione Formato  
1911.06680.pdf

Open Access dal 25/08/2021

Descrizione: Preprint di articolo su rivista
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri
Acciari_2020_ApJS_247_16.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.55 MB
Formato Adobe PDF
9.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1120825