Microplastics are a major environmental challenge, being ubiquitous and persistent as to represent a new component in all marine environments. As any biogenic particle, microplastics provide surfaces for microbial growth and biofilm production, which largely consists of carbohydrates and proteins. Biofilms influence microbial activity and modify particle buoyancy, and therefore control the fate of microplastics at sea. In a simulated 'plastic ocean', three mesocosms containing oligotrophic seawater were amended with polystyrene microbeads and compared to three control mesocosms. The evolution of organic matter, microbial communities and nutrient concentrations was monitored over 12 days. The results indicated that microplastics increased the production of organic carbon and its aggregation into gel particulates. The observed increase of gel-like organics has implications on the marine biological pump as well as the transport of microplastics in the ocean.
Galgani, L., Tsapakis, M., Pitta, P., Tsiola, A., Tzempelikou, E., Kalantzi, I., et al. (2019). Microplastics increase the marine production of particulate forms of organic matter. ENVIRONMENTAL RESEARCH LETTERS, 14(12), 1-12 [10.1088/1748-9326/ab59ca].
Microplastics increase the marine production of particulate forms of organic matter
Galgani L.
Writing – Original Draft Preparation
;Loiselle S. A.
2019-01-01
Abstract
Microplastics are a major environmental challenge, being ubiquitous and persistent as to represent a new component in all marine environments. As any biogenic particle, microplastics provide surfaces for microbial growth and biofilm production, which largely consists of carbohydrates and proteins. Biofilms influence microbial activity and modify particle buoyancy, and therefore control the fate of microplastics at sea. In a simulated 'plastic ocean', three mesocosms containing oligotrophic seawater were amended with polystyrene microbeads and compared to three control mesocosms. The evolution of organic matter, microbial communities and nutrient concentrations was monitored over 12 days. The results indicated that microplastics increased the production of organic carbon and its aggregation into gel particulates. The observed increase of gel-like organics has implications on the marine biological pump as well as the transport of microplastics in the ocean.File | Dimensione | Formato | |
---|---|---|---|
Galgani_2019_Environ._Res._Lett._14_124085.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
2.1 MB
Formato
Adobe PDF
|
2.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1117548