Abstract: A standard tool for classifying the complexity of equivalence relations on ω is provided by computable reducibility. This reducibility gives rise to a rich degree structure. The paper studies equivalence relations, which (Formula presented.), where α ≥ 2 is a computable ordinal and n is a non-zero natural number. We prove that there are infinitely many pairwise incomparable minimal equivalence relations that are properly in Γ.

Bazhenov, N.A., Mustafa, M., San Mauro, L., Yamaleev, M.M. (2020). Minimal Equivalence Relations in Hyperarithmetical and Analytical Hierarchies. LOBACHEVSKII JOURNAL OF MATHEMATICS., 41(2), 145-150 [10.1134/S199508022002002X].

Minimal Equivalence Relations in Hyperarithmetical and Analytical Hierarchies

San Mauro, L.;
2020-01-01

Abstract

Abstract: A standard tool for classifying the complexity of equivalence relations on ω is provided by computable reducibility. This reducibility gives rise to a rich degree structure. The paper studies equivalence relations, which (Formula presented.), where α ≥ 2 is a computable ordinal and n is a non-zero natural number. We prove that there are infinitely many pairwise incomparable minimal equivalence relations that are properly in Γ.
2020
Bazhenov, N.A., Mustafa, M., San Mauro, L., Yamaleev, M.M. (2020). Minimal Equivalence Relations in Hyperarithmetical and Analytical Hierarchies. LOBACHEVSKII JOURNAL OF MATHEMATICS., 41(2), 145-150 [10.1134/S199508022002002X].
File in questo prodotto:
File Dimensione Formato  
Bazhenov2020_Article_MinimalEquivalenceRelationsInH.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 557.88 kB
Formato Adobe PDF
557.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1115992