This paper presents an environmental sustainability assessment of residential user-scale energy systems, named solar home systems, encompassing their construction, operation, and end of life. The methodology adopted is composed of three steps, namely a design phase, a simulation of the solar home systems’ performance and a life cycle assessment. The analysis aims to point out the main advantages, features, and challenges of lithium-ion batteries, considered as a benchmark, compared with other innovative devices. As the environmental sustainability of these systems is affected by the solar radiation intensity during the year, a sensitivity analysis is performed varying the latitude of the installation site in Europe. For each site, both isolated and grid-connected solar home systems have been compared considering also the national electricity mix. A general overview of the results shows that, regardless of the installation site, solid state nickel cobalt manganese and nickel cobalt aluminium lithium-ion batteries are the most suitable choices in terms of sustainability. Remarkably, other novel devices, like sodium-ion batteries, are already competitive with them and have great potential. With these batteries, the solar home systems’ eco-profile is generally advantageous compared to the energy mix, especially in on-grid configurations, with some exceptions.

Rossi, F., Parisi, M.L., Greven, S., Basosi, R., Sinicropi, A. (2020). Life Cycle Assessment of Classic and Innovative Batteries for Solar Home Systems in Europe. ENERGIES, 13(13) [10.3390/en13133454].

Life Cycle Assessment of Classic and Innovative Batteries for Solar Home Systems in Europe

Parisi, Maria Laura;Greven, Sarah;Basosi, Riccardo;Sinicropi, Adalgisa
2020-01-01

Abstract

This paper presents an environmental sustainability assessment of residential user-scale energy systems, named solar home systems, encompassing their construction, operation, and end of life. The methodology adopted is composed of three steps, namely a design phase, a simulation of the solar home systems’ performance and a life cycle assessment. The analysis aims to point out the main advantages, features, and challenges of lithium-ion batteries, considered as a benchmark, compared with other innovative devices. As the environmental sustainability of these systems is affected by the solar radiation intensity during the year, a sensitivity analysis is performed varying the latitude of the installation site in Europe. For each site, both isolated and grid-connected solar home systems have been compared considering also the national electricity mix. A general overview of the results shows that, regardless of the installation site, solid state nickel cobalt manganese and nickel cobalt aluminium lithium-ion batteries are the most suitable choices in terms of sustainability. Remarkably, other novel devices, like sodium-ion batteries, are already competitive with them and have great potential. With these batteries, the solar home systems’ eco-profile is generally advantageous compared to the energy mix, especially in on-grid configurations, with some exceptions.
2020
Rossi, F., Parisi, M.L., Greven, S., Basosi, R., Sinicropi, A. (2020). Life Cycle Assessment of Classic and Innovative Batteries for Solar Home Systems in Europe. ENERGIES, 13(13) [10.3390/en13133454].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1113220
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo