The role of small game in prehistoric hunter-gatherer economy is a highly debated topic. Despite the general assumption that this practice was uneconomic, several studies have underlined the relevance of the circumstance of capture – in terms of hunting strategies and technology – in the evaluation of the actual role of small mammals in human foraging efficiency. Since very few studies have focused on the recognition of bone hunting lesions, in a previous work we explored the potential of 3D microscopy in distinguishing projectile impact marks from other taphonomic marks, developing a widely-applicable diagnostic framework based on experimental data and focused on Late Epigravettian projectiles. Even though we confirmed the validity of the method on zooarchaeological remains of large-sized mammals, the reliability of the experimental record in relation to smaller animals needed more testing and verification. In this report we thus present the data acquired through a new ballistic experiment on small mammals and compare the results to those previously obtained on medium-sized animals, in order to bolster the diagnostic criteria useful in bone lesion identification with specific reference to small game. We also present the application of this renewed methodology to an archaeological context dated to the Late Glacial and located in the eastern Italian Alps.
Duches, R., Nannini, N., Fontana, A., Boschin, F., Crezzini, J., Peresani, M. (2020). Experimental and archaeological data for the identification of projectile impact marks on small-sized mammals. SCIENTIFIC REPORTS, 10(1) [10.1038/s41598-020-66044-3].
Experimental and archaeological data for the identification of projectile impact marks on small-sized mammals
Boschin F.Formal Analysis
;Crezzini J.Formal Analysis
;
2020-01-01
Abstract
The role of small game in prehistoric hunter-gatherer economy is a highly debated topic. Despite the general assumption that this practice was uneconomic, several studies have underlined the relevance of the circumstance of capture – in terms of hunting strategies and technology – in the evaluation of the actual role of small mammals in human foraging efficiency. Since very few studies have focused on the recognition of bone hunting lesions, in a previous work we explored the potential of 3D microscopy in distinguishing projectile impact marks from other taphonomic marks, developing a widely-applicable diagnostic framework based on experimental data and focused on Late Epigravettian projectiles. Even though we confirmed the validity of the method on zooarchaeological remains of large-sized mammals, the reliability of the experimental record in relation to smaller animals needed more testing and verification. In this report we thus present the data acquired through a new ballistic experiment on small mammals and compare the results to those previously obtained on medium-sized animals, in order to bolster the diagnostic criteria useful in bone lesion identification with specific reference to small game. We also present the application of this renewed methodology to an archaeological context dated to the Late Glacial and located in the eastern Italian Alps.File | Dimensione | Formato | |
---|---|---|---|
Duches_et_al_2020_SR_taphonomy_projectile_impact_marks_Pradis_Epigravettian.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1111212