Background: Control of airborne microbial contamination is important in operating rooms (ORs). To keep airborne contamination low, guidelines should highlight the importance of air turnover. The aims of the study were: (1) to verify the association between air turnover and airborne contamination in ORs; and (2) to identify a statistical relationship between air turnover and airborne microbial contamination. Methods: A cross sectional study was carried out from November 2014 to July 2017 in the teaching Hospital of Siena. Nineteen ORs (14 with turbulent and 5 with laminar flow ventilation) were surveyed a total of 59 times under operating conditions. Air samples were collected with an air sampler. Petri dishes, incubated at 36 °C for 48 h, were used to quantify colony forming units in the samples (CFU). The data was transformed to evaluate several statistically significant nonlinear associations between air turnover, quantified as air changes per hour (ACH) and CFU per cubic meter of air (p < 0.05). Results: A log-linear regression model provided the best fit between ACH and CFU for laminar (p = 0.013; R2 = 0.3911) and turbulent flow systems (p = 0.002; R2 = 0.3443). The corresponding model was: ln(CFU) = (a − b*ACH), where the regression parameters were estimated at a = 4.02 and b = 0.037 for laminar flow and a = 5.24 and b = 0.067 for turbulent flow. Conclusions: Italian guidelines indicate microbial load limits of 20 and 180 CFU/m3 for operating rooms with laminar and turbulent flow ventilation, respectively. The model allowed us to evaluate the minimum number of ACHs to keep CFU within these limits. Ad hoc measurements in other environments can be used to calibrate the relationship between ACH and CFU.

Vonci, N., De Marco, M.F., Grasso, A., Spataro, G., Cevenini, G., Messina, G. (2019). Association between air changes and airborne microbial contamination in operating rooms. JOURNAL OF INFECTION AND PUBLIC HEALTH, 12(6), 827-830 [10.1016/j.jiph.2019.05.010].

Association between air changes and airborne microbial contamination in operating rooms

Vonci, N.;Spataro, G.;Cevenini, G.;Messina, G.
2019-01-01

Abstract

Background: Control of airborne microbial contamination is important in operating rooms (ORs). To keep airborne contamination low, guidelines should highlight the importance of air turnover. The aims of the study were: (1) to verify the association between air turnover and airborne contamination in ORs; and (2) to identify a statistical relationship between air turnover and airborne microbial contamination. Methods: A cross sectional study was carried out from November 2014 to July 2017 in the teaching Hospital of Siena. Nineteen ORs (14 with turbulent and 5 with laminar flow ventilation) were surveyed a total of 59 times under operating conditions. Air samples were collected with an air sampler. Petri dishes, incubated at 36 °C for 48 h, were used to quantify colony forming units in the samples (CFU). The data was transformed to evaluate several statistically significant nonlinear associations between air turnover, quantified as air changes per hour (ACH) and CFU per cubic meter of air (p < 0.05). Results: A log-linear regression model provided the best fit between ACH and CFU for laminar (p = 0.013; R2 = 0.3911) and turbulent flow systems (p = 0.002; R2 = 0.3443). The corresponding model was: ln(CFU) = (a − b*ACH), where the regression parameters were estimated at a = 4.02 and b = 0.037 for laminar flow and a = 5.24 and b = 0.067 for turbulent flow. Conclusions: Italian guidelines indicate microbial load limits of 20 and 180 CFU/m3 for operating rooms with laminar and turbulent flow ventilation, respectively. The model allowed us to evaluate the minimum number of ACHs to keep CFU within these limits. Ad hoc measurements in other environments can be used to calibrate the relationship between ACH and CFU.
2019
Vonci, N., De Marco, M.F., Grasso, A., Spataro, G., Cevenini, G., Messina, G. (2019). Association between air changes and airborne microbial contamination in operating rooms. JOURNAL OF INFECTION AND PUBLIC HEALTH, 12(6), 827-830 [10.1016/j.jiph.2019.05.010].
File in questo prodotto:
File Dimensione Formato  
Association_between_air_changes_and_airborne_micro.pdf

non disponibili

Descrizione: articolo principale
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 457.25 kB
Formato Adobe PDF
457.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1106599
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo