We construct a complete invariant of oriented connected closed surfaces in S3, which generalizes the notion of peripheral system of a knot group. As an application, we define two computable invariants to investigate handlebody knots and bi-knotted surfaces with homeomorphic complements. In particular, we obtain an alternative proof of inequivalence of Ishii, Kishimoto, Moriuchi and Suzuki’s handlebody knots 51 and 64.

Bellettini, G., Paolini, M., Wang, Y. (2020). A complete invariant for connected surfaces in the 3-sphere. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 29(1), 1-24 [10.1142/S0218216519500913].

A complete invariant for connected surfaces in the 3-sphere

Giovanni Bellettini;
2020-01-01

Abstract

We construct a complete invariant of oriented connected closed surfaces in S3, which generalizes the notion of peripheral system of a knot group. As an application, we define two computable invariants to investigate handlebody knots and bi-knotted surfaces with homeomorphic complements. In particular, we obtain an alternative proof of inequivalence of Ishii, Kishimoto, Moriuchi and Suzuki’s handlebody knots 51 and 64.
2020
Bellettini, G., Paolini, M., Wang, Y. (2020). A complete invariant for connected surfaces in the 3-sphere. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 29(1), 1-24 [10.1142/S0218216519500913].
File in questo prodotto:
File Dimensione Formato  
2020_Bellettini_Paolini_Wang_JKR.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1105094