Cooperation is a relevant and controversial phenomenon in human societies. Indeed, although it is widely recognized essential for tackling social dilemmas, finding suitable policies for promoting cooperation can be arduous and expensive. More often, it is driven by pre-established schemas based on norms and punishments. To overcome this paradigm, we highlight the interplay between the influence of social interactions on networks and spontaneous self-regulating mechanisms on individuals behavior. We show that the presence of these mechanisms in a prisoner’s dilemma game, may oppose the willingness of individuals to defect, thus allowing them to behave cooperatively, while interacting with others and taking conflicting decisions over time. These results are obtained by extending the Evolutionary Game Equations over Networks to account for self-regulating mechanisms. Specifically, we prove that players may partially or fully cooperate whether self-regulating mechanisms are sufficiently stronger than social pressure. The proposed model can explain unconditional cooperation (strong self-regulation) and unconditional defection (weak self-regulation). For intermediate selfregulation values, more complex behaviors are observed, such as mutual defection, recruiting (cooperate if others cooperate), exploitation of cooperators (defect if others cooperate) and altruism (cooperate if others defect). These phenomena result from dynamical transitions among different game structures, according to changes of system parameters and cooperation of neighboring players. Interestingly, we show that the topology of the network of connections among players is crucial when self-regulation, and the associated costs, are reasonably low. In particular, a population organized on a random network with a Scale-Free distribution of connections is more cooperative than on a network with an Erdös-Rényi distribution, and, in turn, with a regular one. These results highlight that social diversity, encoded within heterogeneous networks, is more effective for promoting cooperation.

Madeo, D., Mocenni, C. (2020). Self-regulation versus social influence for promoting cooperation on networks. SCIENTIFIC REPORTS, 10 [10.1038/s41598-020-61634-7].

Self-regulation versus social influence for promoting cooperation on networks

Madeo, Dario
;
Mocenni, Chiara
2020-01-01

Abstract

Cooperation is a relevant and controversial phenomenon in human societies. Indeed, although it is widely recognized essential for tackling social dilemmas, finding suitable policies for promoting cooperation can be arduous and expensive. More often, it is driven by pre-established schemas based on norms and punishments. To overcome this paradigm, we highlight the interplay between the influence of social interactions on networks and spontaneous self-regulating mechanisms on individuals behavior. We show that the presence of these mechanisms in a prisoner’s dilemma game, may oppose the willingness of individuals to defect, thus allowing them to behave cooperatively, while interacting with others and taking conflicting decisions over time. These results are obtained by extending the Evolutionary Game Equations over Networks to account for self-regulating mechanisms. Specifically, we prove that players may partially or fully cooperate whether self-regulating mechanisms are sufficiently stronger than social pressure. The proposed model can explain unconditional cooperation (strong self-regulation) and unconditional defection (weak self-regulation). For intermediate selfregulation values, more complex behaviors are observed, such as mutual defection, recruiting (cooperate if others cooperate), exploitation of cooperators (defect if others cooperate) and altruism (cooperate if others defect). These phenomena result from dynamical transitions among different game structures, according to changes of system parameters and cooperation of neighboring players. Interestingly, we show that the topology of the network of connections among players is crucial when self-regulation, and the associated costs, are reasonably low. In particular, a population organized on a random network with a Scale-Free distribution of connections is more cooperative than on a network with an Erdös-Rényi distribution, and, in turn, with a regular one. These results highlight that social diversity, encoded within heterogeneous networks, is more effective for promoting cooperation.
2020
Madeo, D., Mocenni, C. (2020). Self-regulation versus social influence for promoting cooperation on networks. SCIENTIFIC REPORTS, 10 [10.1038/s41598-020-61634-7].
File in questo prodotto:
File Dimensione Formato  
s41598-020-61634-7.pdf

Open Access dal 17/03/2020

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1096566