Confirmation of Bitcoin transactions is executed in blocks, which are then stored in the Blockchain. As compared to the number of transactions in the mempool, the set of transactions which are verified but not yet confirmed, available space for inclusion in a block is typically limited. For this reason, successful miners can only process a subset of such transactions, and users compete with each other to enter the next block by offering confirmation fees. Assuming that successful miners pursue revenue maximization, they will include in the block those mempool transactions that maximize earnings from related fees. In the paper we model transaction fees as a Nash Equilibrium outcome of an auction game with complete information. In the game the successful miner acts as an auctioneer selling block space, and users bid for shares of such space to confirm their transactions. Moreover, based on expected fees we also discuss what the optimal, revenue maximizing, block size limit should be for the successful miner. Consistently with the intuition, the optimal block size limit resolves the trade-off between including additional transactions (which possibly lower the unit fees collected) and keeping the block capacity limited (with, however, higher unit fees).
Dimitri, N. (2019). Transaction Fees, Block Size Limit and Auctions in Bitcoin. LEDGER, 4, 68-81 [10.5195/ledger.2019.145].
Transaction Fees, Block Size Limit and Auctions in Bitcoin
Nicola Dimitri
2019-01-01
Abstract
Confirmation of Bitcoin transactions is executed in blocks, which are then stored in the Blockchain. As compared to the number of transactions in the mempool, the set of transactions which are verified but not yet confirmed, available space for inclusion in a block is typically limited. For this reason, successful miners can only process a subset of such transactions, and users compete with each other to enter the next block by offering confirmation fees. Assuming that successful miners pursue revenue maximization, they will include in the block those mempool transactions that maximize earnings from related fees. In the paper we model transaction fees as a Nash Equilibrium outcome of an auction game with complete information. In the game the successful miner acts as an auctioneer selling block space, and users bid for shares of such space to confirm their transactions. Moreover, based on expected fees we also discuss what the optimal, revenue maximizing, block size limit should be for the successful miner. Consistently with the intuition, the optimal block size limit resolves the trade-off between including additional transactions (which possibly lower the unit fees collected) and keeping the block capacity limited (with, however, higher unit fees).File | Dimensione | Formato | |
---|---|---|---|
145-Article Text-874-1-10-20190606.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
949.62 kB
Formato
Adobe PDF
|
949.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1092579