In a previous paper Amman et al. (Macroecon Dyn, 2018) compare the two dominant approaches for solving models with optimal experimentation (also called active learn- ing), i.e. the value function and the approximation method. By using the same model and dataset as in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002), they find that the approximation method produces solutions close to those generated by the value function approach and identify some elements of the model specifications which affect the difference between the two solutions. They conclude that differences are small when the effects of learning are limited. However the dataset used in the experiment describes a situation where the controller is dealing with a nonstationary process and there is no penalty on the control. The goal of this paper is to see if their conclusions hold in the more commonly studied case of a controller facing a stationary process and a positive penalty on the control.

Amman, H.M., Tucci, M.P. (2020). How Active is Active Learning: Value Function Method Versus an Approximation Method. COMPUTATIONAL ECONOMICS, 56(3), 675-693 [10.1007/s10614-020-09968-2].

How Active is Active Learning: Value Function Method Versus an Approximation Method

Marco P. Tucci
2020-01-01

Abstract

In a previous paper Amman et al. (Macroecon Dyn, 2018) compare the two dominant approaches for solving models with optimal experimentation (also called active learn- ing), i.e. the value function and the approximation method. By using the same model and dataset as in Beck and Wieland (J Econ Dyn Control 26:1359–1377, 2002), they find that the approximation method produces solutions close to those generated by the value function approach and identify some elements of the model specifications which affect the difference between the two solutions. They conclude that differences are small when the effects of learning are limited. However the dataset used in the experiment describes a situation where the controller is dealing with a nonstationary process and there is no penalty on the control. The goal of this paper is to see if their conclusions hold in the more commonly studied case of a controller facing a stationary process and a positive penalty on the control.
2020
Amman, H.M., Tucci, M.P. (2020). How Active is Active Learning: Value Function Method Versus an Approximation Method. COMPUTATIONAL ECONOMICS, 56(3), 675-693 [10.1007/s10614-020-09968-2].
File in questo prodotto:
File Dimensione Formato  
Amman-Tucci2020_Article_HowActiveIsActiveLearningValue.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 630.67 kB
Formato Adobe PDF
630.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1092517