Epigenetic regulation allows heritably modulating gene expression profiles without modifying the primary sequence of gDNA. Under physiologic conditions, epigenetic patterns determine tissue-specific gene expression landscapes, gene imprinting, inactivation of chromosome X, and preservation of genomic stability. The most characterized mediators of epigenetic inheritance are gDNA methylation and histone posttranslational modifications that cooperate to alter chromatin state and genome transcription. According to these notions, it is not surprising that cancer cells invariantly deploy epigenetic alterations to achieve gene expression patterns required for neoplastic transformation and tumor progression. In this context, the recently uncovered use of epigenetic alterations by cancer cells to become stealth from the host's immune recognition has significant immunobiologic relevance in tumor progression, and it appears to have potential clinical usefulness. Indeed, immune evasion is among the major obstacles to further improve the efficacy of cancer immunotherapies and to increase long-lasting disease control. Luckily, different "epigenetic drugs" able to revert these "epimutations" are available, some of which have already been approved for clinical use. Here, we summarize the immunomodulatory activities of epigenetic drugs that lead to improved immune recognition of cancer cells and focus on the potential of this class of agents in improving the anticancer activity of novel immunotherapies through combinatorial epigenetic immunotherapy approaches. (C)2015 AACR.
Maio, M., Covre, A., Fratta, E., Di Giacomo, A.M., Taverna, P., Natali, P.G., et al. (2015). Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy. CLINICAL CANCER RESEARCH, 21(18), 4040-4047 [10.1158/1078-0432.CCR-14-2914].
Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy
Maio M.;Covre A.;Di Giacomo A. M.;
2015-01-01
Abstract
Epigenetic regulation allows heritably modulating gene expression profiles without modifying the primary sequence of gDNA. Under physiologic conditions, epigenetic patterns determine tissue-specific gene expression landscapes, gene imprinting, inactivation of chromosome X, and preservation of genomic stability. The most characterized mediators of epigenetic inheritance are gDNA methylation and histone posttranslational modifications that cooperate to alter chromatin state and genome transcription. According to these notions, it is not surprising that cancer cells invariantly deploy epigenetic alterations to achieve gene expression patterns required for neoplastic transformation and tumor progression. In this context, the recently uncovered use of epigenetic alterations by cancer cells to become stealth from the host's immune recognition has significant immunobiologic relevance in tumor progression, and it appears to have potential clinical usefulness. Indeed, immune evasion is among the major obstacles to further improve the efficacy of cancer immunotherapies and to increase long-lasting disease control. Luckily, different "epigenetic drugs" able to revert these "epimutations" are available, some of which have already been approved for clinical use. Here, we summarize the immunomodulatory activities of epigenetic drugs that lead to improved immune recognition of cancer cells and focus on the potential of this class of agents in improving the anticancer activity of novel immunotherapies through combinatorial epigenetic immunotherapy approaches. (C)2015 AACR.File | Dimensione | Formato | |
---|---|---|---|
Molecular pathways - Maio.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
710.43 kB
Formato
Adobe PDF
|
710.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1090123