We study the graphs of maps u : Omega -> R-3 whose curl is an integral 1-current with coefficients in Z(3). We characterize the graph boundary of such maps under a suitable summability property. We apply these results to study a three-dimensional single crystal with dislocations forming general one-dimensional clusters in the framework of finite elasticity. By virtue of a variational approach, a free energy depending on the deformation field and its gradient is considered. The problem we address is the joint minimization of the free energy with respect to the deformation field and the dislocation lines. We apply closedness results for graphs of torus-valued maps, seen as integral currents and, from the characterization of their graph boundaries, we are able to prove existence of minimizers.

Scala, R., Van Goethem, N. (2019). A variational approach to single crystals with dislocations. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 51(1), 489-531 [10.1137/18M1166572].

A variational approach to single crystals with dislocations

Scala R;
2019-01-01

Abstract

We study the graphs of maps u : Omega -> R-3 whose curl is an integral 1-current with coefficients in Z(3). We characterize the graph boundary of such maps under a suitable summability property. We apply these results to study a three-dimensional single crystal with dislocations forming general one-dimensional clusters in the framework of finite elasticity. By virtue of a variational approach, a free energy depending on the deformation field and its gradient is considered. The problem we address is the joint minimization of the free energy with respect to the deformation field and the dislocation lines. We apply closedness results for graphs of torus-valued maps, seen as integral currents and, from the characterization of their graph boundaries, we are able to prove existence of minimizers.
2019
Scala, R., Van Goethem, N. (2019). A variational approach to single crystals with dislocations. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 51(1), 489-531 [10.1137/18M1166572].
File in questo prodotto:
File Dimensione Formato  
Scala 2019.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 647.6 kB
Formato Adobe PDF
647.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1087434