Let G(k)(V) be the k-Grassmannian of a vector space V with dim V = n. Given a hyperplane H of G(k)(V), we define in [3] a point-line subgeometry of PG(V) called the geometry of poles of H. In the present paper, exploiting the classification of alternating trilinear forms in low dimension, we characterize the possible geometries of poles arising for k = 3 and n <= 7 and propose some new constructions. We also extend a result of [6] regarding the existence of line spreads of PG(5, K) arising from hyperplanes of G(3)(V).

Cardinali, I., Giuzzi, L. (2019). Geometries arising from trilinear forms on low-dimensional vector spaces. ADVANCES IN GEOMETRY, 19(2), 269-290 [10.1515/advgeom-2018-0027].

Geometries arising from trilinear forms on low-dimensional vector spaces

Cardinali, I.
;
2019-01-01

Abstract

Let G(k)(V) be the k-Grassmannian of a vector space V with dim V = n. Given a hyperplane H of G(k)(V), we define in [3] a point-line subgeometry of PG(V) called the geometry of poles of H. In the present paper, exploiting the classification of alternating trilinear forms in low dimension, we characterize the possible geometries of poles arising for k = 3 and n <= 7 and propose some new constructions. We also extend a result of [6] regarding the existence of line spreads of PG(5, K) arising from hyperplanes of G(3)(V).
2019
Cardinali, I., Giuzzi, L. (2019). Geometries arising from trilinear forms on low-dimensional vector spaces. ADVANCES IN GEOMETRY, 19(2), 269-290 [10.1515/advgeom-2018-0027].
File in questo prodotto:
File Dimensione Formato  
[Advances in Geometry] Geometries arising from trilinear forms on low-dimensional vector spaces.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 874.42 kB
Formato Adobe PDF
874.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
geometry of poles-rk6-7-v4-revised postprint.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 392.49 kB
Formato Adobe PDF
392.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1083404