Let G(k)(V) be the k-Grassmannian of a vector space V with dim V = n. Given a hyperplane H of G(k)(V), we define in [3] a point-line subgeometry of PG(V) called the geometry of poles of H. In the present paper, exploiting the classification of alternating trilinear forms in low dimension, we characterize the possible geometries of poles arising for k = 3 and n <= 7 and propose some new constructions. We also extend a result of [6] regarding the existence of line spreads of PG(5, K) arising from hyperplanes of G(3)(V).
Cardinali, I., Giuzzi, L. (2019). Geometries arising from trilinear forms on low-dimensional vector spaces. ADVANCES IN GEOMETRY, 19(2), 269-290 [10.1515/advgeom-2018-0027].
Geometries arising from trilinear forms on low-dimensional vector spaces
Cardinali, I.
;
2019-01-01
Abstract
Let G(k)(V) be the k-Grassmannian of a vector space V with dim V = n. Given a hyperplane H of G(k)(V), we define in [3] a point-line subgeometry of PG(V) called the geometry of poles of H. In the present paper, exploiting the classification of alternating trilinear forms in low dimension, we characterize the possible geometries of poles arising for k = 3 and n <= 7 and propose some new constructions. We also extend a result of [6] regarding the existence of line spreads of PG(5, K) arising from hyperplanes of G(3)(V).File | Dimensione | Formato | |
---|---|---|---|
[Advances in Geometry] Geometries arising from trilinear forms on low-dimensional vector spaces.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
874.42 kB
Formato
Adobe PDF
|
874.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
geometry of poles-rk6-7-v4-revised postprint.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
392.49 kB
Formato
Adobe PDF
|
392.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1083404