This paper presents new designs, implementation and experiments of metasurface (MTS) antennas constituted by subwavelength elements printed on a grounded dielectric slab. These antennas exploit the interaction between a cylindrical surface wave (SW) wavefront and an anisotropic impedance boundary condition (BC) to produce an almost arbitrary aperture field. They are extremely thin and excited by a simple in-plane monopole. By tailoring the BC through the shaping of the printed elements, these antennas can be largely customized in terms of beam shape, bandwidth and polarization. In this paper, we describe new designs and their implementation and measurements. It is experimentally shown for the first time that these antennas can have aperture efficiency up to 70%, a bandwidth up to 30%, they can produce two different direction beams of high-gain and similar beams at two different frequencies, showing performances never reached before.

Faenzi, M., Minatti, G., Gonzalez-Ovejero, D., Caminita, F., Martini, E., Della Giovampaola, C., et al. (2019). Metasurface Antennas: New Models, Applications and Realizations. SCIENTIFIC REPORTS, 9(1) [10.1038/s41598-019-46522-z].

Metasurface Antennas: New Models, Applications and Realizations

Faenzi M.;Minatti G.;Gonzalez-Ovejero D.;Caminita F.;Martini E.;Della Giovampaola C.;Maci S.
2019-01-01

Abstract

This paper presents new designs, implementation and experiments of metasurface (MTS) antennas constituted by subwavelength elements printed on a grounded dielectric slab. These antennas exploit the interaction between a cylindrical surface wave (SW) wavefront and an anisotropic impedance boundary condition (BC) to produce an almost arbitrary aperture field. They are extremely thin and excited by a simple in-plane monopole. By tailoring the BC through the shaping of the printed elements, these antennas can be largely customized in terms of beam shape, bandwidth and polarization. In this paper, we describe new designs and their implementation and measurements. It is experimentally shown for the first time that these antennas can have aperture efficiency up to 70%, a bandwidth up to 30%, they can produce two different direction beams of high-gain and similar beams at two different frequencies, showing performances never reached before.
Faenzi, M., Minatti, G., Gonzalez-Ovejero, D., Caminita, F., Martini, E., Della Giovampaola, C., et al. (2019). Metasurface Antennas: New Models, Applications and Realizations. SCIENTIFIC REPORTS, 9(1) [10.1038/s41598-019-46522-z].
File in questo prodotto:
File Dimensione Formato  
Faenzi_et_al-2019-Scientific_Reports.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 5.01 MB
Formato Adobe PDF
5.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1082887