We show that there exists a set A such that A has quasi-minimal enumeration degree, and there are uncountably many sets B such that A is enumeration reducible to B and B has minimal Turing degree. Answering a related question raised by Solon, we also show that there exists a nontotal enumeration degree which is not e-hyperimmune.

Slaman, T.A., Sorbi, A. (1998). Quasi-minimal enumeration degrees and minimal Turing degrees. ANNALI DI MATEMATICA PURA ED APPLICATA, 174(1), 97-120 [10.1007/BF01759368].

Quasi-minimal enumeration degrees and minimal Turing degrees

Sorbi, A.
1998-01-01

Abstract

We show that there exists a set A such that A has quasi-minimal enumeration degree, and there are uncountably many sets B such that A is enumeration reducible to B and B has minimal Turing degree. Answering a related question raised by Solon, we also show that there exists a nontotal enumeration degree which is not e-hyperimmune.
1998
Slaman, T.A., Sorbi, A. (1998). Quasi-minimal enumeration degrees and minimal Turing degrees. ANNALI DI MATEMATICA PURA ED APPLICATA, 174(1), 97-120 [10.1007/BF01759368].
File in questo prodotto:
File Dimensione Formato  
quasiminimal-Slaman-Sorbi.pdf

non disponibili

Descrizione: Articolo
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 275.93 kB
Formato Adobe PDF
275.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1082795