We show that there exists a set A such that A has quasi-minimal enumeration degree, and there are uncountably many sets B such that A is enumeration reducible to B and B has minimal Turing degree. Answering a related question raised by Solon, we also show that there exists a nontotal enumeration degree which is not e-hyperimmune.
Slaman, T.A., Sorbi, A. (1998). Quasi-minimal enumeration degrees and minimal Turing degrees. ANNALI DI MATEMATICA PURA ED APPLICATA, 174(1), 97-120 [10.1007/BF01759368].
Quasi-minimal enumeration degrees and minimal Turing degrees
Sorbi, A.
1998-01-01
Abstract
We show that there exists a set A such that A has quasi-minimal enumeration degree, and there are uncountably many sets B such that A is enumeration reducible to B and B has minimal Turing degree. Answering a related question raised by Solon, we also show that there exists a nontotal enumeration degree which is not e-hyperimmune.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
quasiminimal-Slaman-Sorbi.pdf
non disponibili
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
275.93 kB
Formato
Adobe PDF
|
275.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1082795