We introduce a notion of relative efficiency for axiom systems. Given an axiom system A_eta for a theory T consistent with S^1_2, we show that the problem of deciding whether an axiom system A_alpha for the same theory is more efficient than A_eta is Pi_2-hard. Several possibilities of speed-up of proofs are examined in relation to pairs of axiom systems A_alpha, A_eta, with A_alpha including A_eta, both in the case of A_alpha, A_eta having the same language, and in the case of the language of A_alpha extending that of A_eta: in the latter case, letting Pr_alpha, Pr_eta denote the theories axiomatized by A_alpha, A_eta, respectively, and assuming Pr_alpha to be a conservative extension of Pr_eta, we show that if A_alpha-A_eta contains no nonlogical axioms, then A_alpha can only be a linear speed-up of A_eta; otherwise, given any recursive function g and any A_eta, there exists a finite extension A_alpha of A_eta such that A_alpha is a speed-up of A_eta with respect to g.

Fontani, S., Montagna, F., Sorbi, A. (1994). A Note on Relative Efficiency of Axiom Systems. MATHEMATICAL LOGIC QUARTERLY, 40(2), 261-272 [10.1002/malq.19940400211].

A Note on Relative Efficiency of Axiom Systems

FONTANI, SANDRA;Montagna F.;Sorbi A.
1994-01-01

Abstract

We introduce a notion of relative efficiency for axiom systems. Given an axiom system A_eta for a theory T consistent with S^1_2, we show that the problem of deciding whether an axiom system A_alpha for the same theory is more efficient than A_eta is Pi_2-hard. Several possibilities of speed-up of proofs are examined in relation to pairs of axiom systems A_alpha, A_eta, with A_alpha including A_eta, both in the case of A_alpha, A_eta having the same language, and in the case of the language of A_alpha extending that of A_eta: in the latter case, letting Pr_alpha, Pr_eta denote the theories axiomatized by A_alpha, A_eta, respectively, and assuming Pr_alpha to be a conservative extension of Pr_eta, we show that if A_alpha-A_eta contains no nonlogical axioms, then A_alpha can only be a linear speed-up of A_eta; otherwise, given any recursive function g and any A_eta, there exists a finite extension A_alpha of A_eta such that A_alpha is a speed-up of A_eta with respect to g.
1994
Fontani, S., Montagna, F., Sorbi, A. (1994). A Note on Relative Efficiency of Axiom Systems. MATHEMATICAL LOGIC QUARTERLY, 40(2), 261-272 [10.1002/malq.19940400211].
File in questo prodotto:
File Dimensione Formato  
relative-efficiency.pdf

non disponibili

Descrizione: Articolo
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 664.14 kB
Formato Adobe PDF
664.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1082771