We prove the following three theorems on the enumeration degrees of Sigma(2)(0) sets. Theorem A: There exists a nonzero noncuppable Sigma(2)(0) enumeration degree, Theorem B: Every nonzero Delta(2)(0) enumeration degree is cuppable to 0(3)', by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Delta(2)(0) enumeration degree with the anticupping property.

Cooper, S.B., Sorbi, A., Yi, X. (1996). Cupping and noncupping in the enumeration degrees of Σ02 sets. ANNALS OF PURE AND APPLIED LOGIC, 82(3), 317-342 [10.1016/S0168-0072(96)00009-7].

Cupping and noncupping in the enumeration degrees of Σ02 sets

Sorbi A.;
1996-01-01

Abstract

We prove the following three theorems on the enumeration degrees of Sigma(2)(0) sets. Theorem A: There exists a nonzero noncuppable Sigma(2)(0) enumeration degree, Theorem B: Every nonzero Delta(2)(0) enumeration degree is cuppable to 0(3)', by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Delta(2)(0) enumeration degree with the anticupping property.
1996
Cooper, S.B., Sorbi, A., Yi, X. (1996). Cupping and noncupping in the enumeration degrees of Σ02 sets. ANNALS OF PURE AND APPLIED LOGIC, 82(3), 317-342 [10.1016/S0168-0072(96)00009-7].
File in questo prodotto:
File Dimensione Formato  
cupping-noncupping.pdf

non disponibili

Descrizione: Articolo
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1082610