Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multi-wavelength (MWL) observations constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073326.7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within a MWL context, including an analysis of the Fermi-LAT data over ten years of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EHBL. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broad-band SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-band SED.

Acciari, V.A., Ansoldi, S., Antonelli, L.A., Engels, A.A., Baack, D., Babić, A., et al. (2019). Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 490(2), 2284-2299 [10.1093/mnras/stz2725].

Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes

BELLIZZI, LORENZO
Membro del Collaboration Group
;
Bonnoli, G
Supervision
;
Da Vela, P
Membro del Collaboration Group
;
Ninci, D
Membro del Collaboration Group
;
Paoletti, R
Data Curation
;
Rugliancich, A
Membro del Collaboration Group
;
Stamerra, A
Project Administration
;
2019-01-01

Abstract

Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multi-wavelength (MWL) observations constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073326.7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within a MWL context, including an analysis of the Fermi-LAT data over ten years of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EHBL. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broad-band SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-band SED.
2019
Acciari, V.A., Ansoldi, S., Antonelli, L.A., Engels, A.A., Baack, D., Babić, A., et al. (2019). Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 490(2), 2284-2299 [10.1093/mnras/stz2725].
File in questo prodotto:
File Dimensione Formato  
stz2725.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1082153