MicroRNAs (miRs) are important posttranscriptional regulators of gene expression. Besides their well-characterized inhibitory effects on mRNA stability and translation, miRs can also activate gene expression. In this study, we identified a novel noncanonical function of miR-574-5p. We found that miR-574-5p acts as an RNA decoy to CUG RNA-binding protein 1 (CUGBP1) and antagonizes its function. MiR-574-5p induces microsomal prostaglandin E synthase-1 (mPGES-1) expression by preventing CUGBP1 binding to its 3 ' UTR, leading to an enhanced alternative splicing and generation of an mPGES-1 3 ' UTR isoform, increased mPGES-1 protein expression, PGE(2) formation, and tumor growth in vivo. miR-574-5p-induced tumor growth in mice could be completely inhibited with the mPGES-1 inhibitor CIII. Moreover, miR-574-5p is induced by IL-1 beta and is strongly overexpressed in human nonsmall cell lung cancer where high mPGES-1 expression correlates with a low survival rate. The discovered function of miR-574-5p as a CUGBP1 decoy opens up new therapeutic opportunities. It might serve as a stratification marker to select lung tumor patients who respond to the pharmacological inhibition of PGE(2) formation.-Saul, M. J., Baumann, I., Bruno, A., Emmerich, A. C., Wellstein, J., Ottinger, S. M., Contursi, A., Dovizio, M., Donnini, S., Tacconelli, S., Raouf, J., Idborg, H., Stein, S., Korotkova, M., Savai, R., Terzuoli, E., Sala, G., Seeger, W., Jakobsson, P.-J., Patrignani, P., Suess, B., Steinhilber, D. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction.

Saul, M.J., Baumann, I., Bruno, A., Emmerich, A.C., Wellstein, J., Ottinger, S.M., et al. (2019). miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction. FASEB JOURNAL, 33(6), 6933-6947 [10.1096/fj.201802547R].

miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction

Donnini S.;Terzuoli E.;
2019-01-01

Abstract

MicroRNAs (miRs) are important posttranscriptional regulators of gene expression. Besides their well-characterized inhibitory effects on mRNA stability and translation, miRs can also activate gene expression. In this study, we identified a novel noncanonical function of miR-574-5p. We found that miR-574-5p acts as an RNA decoy to CUG RNA-binding protein 1 (CUGBP1) and antagonizes its function. MiR-574-5p induces microsomal prostaglandin E synthase-1 (mPGES-1) expression by preventing CUGBP1 binding to its 3 ' UTR, leading to an enhanced alternative splicing and generation of an mPGES-1 3 ' UTR isoform, increased mPGES-1 protein expression, PGE(2) formation, and tumor growth in vivo. miR-574-5p-induced tumor growth in mice could be completely inhibited with the mPGES-1 inhibitor CIII. Moreover, miR-574-5p is induced by IL-1 beta and is strongly overexpressed in human nonsmall cell lung cancer where high mPGES-1 expression correlates with a low survival rate. The discovered function of miR-574-5p as a CUGBP1 decoy opens up new therapeutic opportunities. It might serve as a stratification marker to select lung tumor patients who respond to the pharmacological inhibition of PGE(2) formation.-Saul, M. J., Baumann, I., Bruno, A., Emmerich, A. C., Wellstein, J., Ottinger, S. M., Contursi, A., Dovizio, M., Donnini, S., Tacconelli, S., Raouf, J., Idborg, H., Stein, S., Korotkova, M., Savai, R., Terzuoli, E., Sala, G., Seeger, W., Jakobsson, P.-J., Patrignani, P., Suess, B., Steinhilber, D. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction.
2019
Saul, M.J., Baumann, I., Bruno, A., Emmerich, A.C., Wellstein, J., Ottinger, S.M., et al. (2019). miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction. FASEB JOURNAL, 33(6), 6933-6947 [10.1096/fj.201802547R].
File in questo prodotto:
File Dimensione Formato  
FasebJ2019.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1080863