This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper, we establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of Burichenko establishing the symmetry group of Strassen’s algorithm, and present two particularly nice subfamilies in the Strassen family of decompositions.
Chiantini, L., Ikenmayer, C., Landsberg, J.M., Ottaviani, G. (2019). The geometry of rank decompositions of matrix multiplication I: 2x2 matrices. EXPERIMENTAL MATHEMATICS, 28(3), 322-327 [10.1080/10586458.2017.1403981].
The geometry of rank decompositions of matrix multiplication I: 2x2 matrices
Chiantini L.Investigation
;
2019-01-01
Abstract
This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper, we establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of Burichenko establishing the symmetry group of Strassen’s algorithm, and present two particularly nice subfamilies in the Strassen family of decompositions.File | Dimensione | Formato | |
---|---|---|---|
Cilo.pdf
non disponibili
Descrizione: articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
699.78 kB
Formato
Adobe PDF
|
699.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1078528