This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper, we establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of Burichenko establishing the symmetry group of Strassen’s algorithm, and present two particularly nice subfamilies in the Strassen family of decompositions.

Chiantini, L., Ikenmayer, C., Landsberg, J.M., Ottaviani, G. (2019). The geometry of rank decompositions of matrix multiplication I: 2x2 matrices. EXPERIMENTAL MATHEMATICS, 28(3), 322-327 [10.1080/10586458.2017.1403981].

The geometry of rank decompositions of matrix multiplication I: 2x2 matrices

Chiantini L.
Investigation
;
2019-01-01

Abstract

This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper, we establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of Burichenko establishing the symmetry group of Strassen’s algorithm, and present two particularly nice subfamilies in the Strassen family of decompositions.
2019
Chiantini, L., Ikenmayer, C., Landsberg, J.M., Ottaviani, G. (2019). The geometry of rank decompositions of matrix multiplication I: 2x2 matrices. EXPERIMENTAL MATHEMATICS, 28(3), 322-327 [10.1080/10586458.2017.1403981].
File in questo prodotto:
File Dimensione Formato  
Cilo.pdf

non disponibili

Descrizione: articolo
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 699.78 kB
Formato Adobe PDF
699.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1078528