Working memory (WM) refers to a set of cognitive processes that allows for the temporary storage and manipulation of information, crucial for everyday life skills. WM deficits are present in several neurological, psychiatric, and neurodevelopmental disorders, thus making the full understanding of its neural correlates a key aspect for the implementation of cognitive training interventions. Here, we present a quantitative meta-analysis focusing on the underlying neural substrates upon which the n-back, one of the most commonly used tasks for WM assessment, is believed to rely on, as highlighted by functional magnetic resonance imaging and positron emission tomography findings. Relevant published work was scrutinized through the activation likelihood estimate (ALE) statistical framework in order to generate a set of task-specific activation maps, according to n-back difficulty. Our results confirm the known involvement of frontoparietal areas across different types of n-back tasks, as well as the recruitment of subcortical structures, cerebellum and precuneus. Specific activations maps for four stimuli types, six presentation modalities, three WM loads and their combination are provided and discussed. Moreover, functional overlap with resting-state networks highlighted a strong similarity between n-back nodes and the Dorsal Attention Network, with less overlap with other networks like Salience, Language, and Sensorimotor ones. Additionally, neural deactivations during n-back tasks and their functional connectivity profile were examined. Clinical and functional implications are discussed in the context of potential noninvasive brain stimulation and cognitive enhancement/rehabilitation programs.

Lucia, M., Neri, F., Momi, D., Menardi, A., Rossi, S., Rossi, A., et al. (2019). Stimuli, presentation modality, and load-specific brain activity patterns during n-back task. HUMAN BRAIN MAPPING, 40(13), 3810-3831 [10.1002/hbm.24633].

Stimuli, presentation modality, and load-specific brain activity patterns during n-back task

Francesco Neri
Membro del Collaboration Group
;
Simone Rossi
Membro del Collaboration Group
;
Alessandro Rossi
Membro del Collaboration Group
;
Emiliano Santarnecchi.
Membro del Collaboration Group
2019-01-01

Abstract

Working memory (WM) refers to a set of cognitive processes that allows for the temporary storage and manipulation of information, crucial for everyday life skills. WM deficits are present in several neurological, psychiatric, and neurodevelopmental disorders, thus making the full understanding of its neural correlates a key aspect for the implementation of cognitive training interventions. Here, we present a quantitative meta-analysis focusing on the underlying neural substrates upon which the n-back, one of the most commonly used tasks for WM assessment, is believed to rely on, as highlighted by functional magnetic resonance imaging and positron emission tomography findings. Relevant published work was scrutinized through the activation likelihood estimate (ALE) statistical framework in order to generate a set of task-specific activation maps, according to n-back difficulty. Our results confirm the known involvement of frontoparietal areas across different types of n-back tasks, as well as the recruitment of subcortical structures, cerebellum and precuneus. Specific activations maps for four stimuli types, six presentation modalities, three WM loads and their combination are provided and discussed. Moreover, functional overlap with resting-state networks highlighted a strong similarity between n-back nodes and the Dorsal Attention Network, with less overlap with other networks like Salience, Language, and Sensorimotor ones. Additionally, neural deactivations during n-back tasks and their functional connectivity profile were examined. Clinical and functional implications are discussed in the context of potential noninvasive brain stimulation and cognitive enhancement/rehabilitation programs.
2019
Lucia, M., Neri, F., Momi, D., Menardi, A., Rossi, S., Rossi, A., et al. (2019). Stimuli, presentation modality, and load-specific brain activity patterns during n-back task. HUMAN BRAIN MAPPING, 40(13), 3810-3831 [10.1002/hbm.24633].
File in questo prodotto:
File Dimensione Formato  
hbm.24633.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.35 MB
Formato Adobe PDF
6.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1074286