Open pit mines localized in high mountains are probably one of the most complex environments for Structure-From-Motion (SfM) based photogrammetry. The case study presented in this paper refers to the realization of a detailed topographic mapping in the Torano marble basin (Apuan Alps, Italy) which needed, after decades of excavation activity, a new topographic survey. Given the requested very high resolution, the time constraints and safety-related problems, a photogrammetric approach by a fixedwing Unmanned Aerial Vehicle (UAV) was chosen to carry out thesurvey of the basin. In addition, given the morphological complexity of the area, characterized by extreme steep slopes more than hundreds of meters high, and the necessity to minimize the fieldwork without sacrificing the work quality, an UAV equipped with a L1/L2 Network Real Time Kinematic (NRTK) Global Navigation Satellite System (GNSS) was used. The scope of this work is to compare the accuracy of UAV derived 3D photogrammetric models realized with different approaches: by using traditional Ground Control Points (GCPs), by using the on-board Network Real Time Kinematic system for camera position detection, and a mix of both. At the end, we tested the quality of the models to verify the reachable levels of accuracy.
Tufarolo, E., Vanneschi, C., Casella, M., Salvini, R. (2019). Evaluation of camera positions and ground points quality in a GNSS-NRTK based UAV survey: preliminary results from a practical test in morphological very complex areas. INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES, XLII-2(W13), 637-641 [10.5194/isprs-archives-XLII-2-W13-637-2019].
Evaluation of camera positions and ground points quality in a GNSS-NRTK based UAV survey: preliminary results from a practical test in morphological very complex areas
E. Tufarolo
;C. Vanneschi;R. Salvini
2019-01-01
Abstract
Open pit mines localized in high mountains are probably one of the most complex environments for Structure-From-Motion (SfM) based photogrammetry. The case study presented in this paper refers to the realization of a detailed topographic mapping in the Torano marble basin (Apuan Alps, Italy) which needed, after decades of excavation activity, a new topographic survey. Given the requested very high resolution, the time constraints and safety-related problems, a photogrammetric approach by a fixedwing Unmanned Aerial Vehicle (UAV) was chosen to carry out thesurvey of the basin. In addition, given the morphological complexity of the area, characterized by extreme steep slopes more than hundreds of meters high, and the necessity to minimize the fieldwork without sacrificing the work quality, an UAV equipped with a L1/L2 Network Real Time Kinematic (NRTK) Global Navigation Satellite System (GNSS) was used. The scope of this work is to compare the accuracy of UAV derived 3D photogrammetric models realized with different approaches: by using traditional Ground Control Points (GCPs), by using the on-board Network Real Time Kinematic system for camera position detection, and a mix of both. At the end, we tested the quality of the models to verify the reachable levels of accuracy.File | Dimensione | Formato | |
---|---|---|---|
Tufarolo_etal_ISPRSarch2019.pdf
accesso aperto
Descrizione: Tufarolo_etal_ISPRSarch2019
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
1.99 MB
Formato
Adobe PDF
|
1.99 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1073952