Planktonic foraminifera are widely used for biostratigraphy and correlation of Mediterranean Neogene marine sediments, and are a fundamental component in the astronomical tuning of the Neogene Time Scale. Recent developments in high-resolution studies, focused on the astronomical calibration of cyclically marine sediments cropping out in land-based sections and recovered from deep-sea successions, increased the accuracy of stratigraphic ranges of planktonic foraminiferal species improving the biostratigraphic resolution and biochronology. The large amount of data on planktonic foraminifera obtained through quantitative/semiquantitative analyses, published in the recent years, allowed the revision of many biohorizons and their calibrations. We incorporate these developments and emendments into the existing Mediterranean planktonic foraminiferal biozonation. Therefore, in this paper, we present an emended Standard Mediterranean planktonic foraminiferal biozonation with a detailed description of zones and subzones within the framework of the Astronomical Tuned Neogene Time Scale 2004 and 2012 (ATNTS2004, ATNTS2012) and we provide the range chart of the most common planktonic foraminiferal taxa and the quantitative distribution pattern of selected marker species. Twenty-two biozones and thirty-one subzones have been identified that span the past 23 million years. We distinguished them using the following code system: MMi1 to MMi13: Mediterranean Miocene biozones, MPl1 to MPl6: Mediterranean Pliocene biozones (according to the Gelasian as the uppermost stage of the Pliocene Series/Epoch), and MPle1 to MPle2: Mediterranean Pleistocene biozones (according to the Calabrian as the lowermost stage of the Pleistocene Series/Epoch). We assembled 118 Neogene planktonic foraminiferal biohorizons from multiple datasets, and incorporated the calibration of these bioevents into a revised Neogene planktonic foraminiferal biochronology. The revised and recalibrated data provide a major progress in biostratigraphic and biochronologic resolution and a template for future progress of the Neogene time scale. Unfortunately, two main gaps of planktonic foraminiferal quantitative data occur in the late Burdigalian, between 16.60 Ma and 17.23 Ma, and at Aquitanian/Burdigalian boundary, between 19.74 Ma and 21.16 Ma, due to the absence of high-resolution studies of these time intervals in the Mediterranean.

Lirer, F., Caruso, A., Cosentino, C., Turco, E., Sierro, F., Salvatorini, G., et al. (2019). Mediterranean Neogene planktonic foraminifer biozonation and biochronology. EARTH-SCIENCE REVIEWS, 196 [10.1016/j.earscirev.2019.05.013].

Mediterranean Neogene planktonic foraminifer biozonation and biochronology

Salvatorini, Gianfranco;Foresi, Luca Maria;
2019-01-01

Abstract

Planktonic foraminifera are widely used for biostratigraphy and correlation of Mediterranean Neogene marine sediments, and are a fundamental component in the astronomical tuning of the Neogene Time Scale. Recent developments in high-resolution studies, focused on the astronomical calibration of cyclically marine sediments cropping out in land-based sections and recovered from deep-sea successions, increased the accuracy of stratigraphic ranges of planktonic foraminiferal species improving the biostratigraphic resolution and biochronology. The large amount of data on planktonic foraminifera obtained through quantitative/semiquantitative analyses, published in the recent years, allowed the revision of many biohorizons and their calibrations. We incorporate these developments and emendments into the existing Mediterranean planktonic foraminiferal biozonation. Therefore, in this paper, we present an emended Standard Mediterranean planktonic foraminiferal biozonation with a detailed description of zones and subzones within the framework of the Astronomical Tuned Neogene Time Scale 2004 and 2012 (ATNTS2004, ATNTS2012) and we provide the range chart of the most common planktonic foraminiferal taxa and the quantitative distribution pattern of selected marker species. Twenty-two biozones and thirty-one subzones have been identified that span the past 23 million years. We distinguished them using the following code system: MMi1 to MMi13: Mediterranean Miocene biozones, MPl1 to MPl6: Mediterranean Pliocene biozones (according to the Gelasian as the uppermost stage of the Pliocene Series/Epoch), and MPle1 to MPle2: Mediterranean Pleistocene biozones (according to the Calabrian as the lowermost stage of the Pleistocene Series/Epoch). We assembled 118 Neogene planktonic foraminiferal biohorizons from multiple datasets, and incorporated the calibration of these bioevents into a revised Neogene planktonic foraminiferal biochronology. The revised and recalibrated data provide a major progress in biostratigraphic and biochronologic resolution and a template for future progress of the Neogene time scale. Unfortunately, two main gaps of planktonic foraminiferal quantitative data occur in the late Burdigalian, between 16.60 Ma and 17.23 Ma, and at Aquitanian/Burdigalian boundary, between 19.74 Ma and 21.16 Ma, due to the absence of high-resolution studies of these time intervals in the Mediterranean.
2019
Lirer, F., Caruso, A., Cosentino, C., Turco, E., Sierro, F., Salvatorini, G., et al. (2019). Mediterranean Neogene planktonic foraminifer biozonation and biochronology. EARTH-SCIENCE REVIEWS, 196 [10.1016/j.earscirev.2019.05.013].
File in questo prodotto:
File Dimensione Formato  
Lirer et al 2019 Neogene biostratigraphy(1).pdf

non disponibili

Descrizione: Articolo stampato
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.18 MB
Formato Adobe PDF
3.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1073190