Let X in P^r be an integral and non-degenerate variety. Set n:= dim (X). We prove that if the (k+n-1)-secant variety of X has (the expected) dimension (k+n-1)(n+1)-1<r and X is not uniruled by lines, then X is not k-weakly defective and hence the k-secant variety satisfies identifiability, i.e. a general element of it is in the linear span of a unique S in X with card(S) =k. We apply this result to many Segre-Veronese varieties and to the identifiability of Gaussian mixtures G{1,d}. If X is the Segre embedding of a multiprojective space we prove identifiability for the k-secant variety (assuming that the (k+n-1)-secant variety has dimension (k+n-1)(n+1)-1<r, this is a known result in many cases), beating several bounds on the identifiability of tensors.
Ballico, E., Bernardi, A., Chiantini, L. (2018). On the dimension of contact loci and the identifiability of tensors. ARKIV FÖR MATEMATIK, 56(2), 265-283 [10.4310/ARKIV.2018.v56.n2.a4].
On the dimension of contact loci and the identifiability of tensors
Chiantini, Luca
2018-01-01
Abstract
Let X in P^r be an integral and non-degenerate variety. Set n:= dim (X). We prove that if the (k+n-1)-secant variety of X has (the expected) dimension (k+n-1)(n+1)-1File | Dimensione | Formato | |
---|---|---|---|
Unirank.pdf
non disponibili
Descrizione: articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
288.62 kB
Formato
Adobe PDF
|
288.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1072772