A reversed-phase high-performance liquid chromatography method is described for the determination of oxybutynin (OXB) in human bladder samples. Following homogenization, tissue samples underwent double extraction with hexane and eventually were concentrated by freeze-drying before analysis. Chromatographic separation was performed with a mobile phase of acetonitrile-water-1 M ammonium acetate, pH 7.0 (85:13:2, v/v/v) at a flow-rate of 0.5 ml/min and double (electrochemical and UV) detection was applied. The retention time of oxybutynin eluting peak was around 18 min. Using a standard curve range of 10 to 500 ng/ml the quantification limit with electrochemical detection was 5 ng/ml with an injection volume of 100 microl. Within-day and day-to-day relative standard deviation values were 4.9 and 9.81%, respectively, while a 94% accuracy and a 72% recovery was attained. We applied this method to compare the OXB levels into bladder wall tissue samples after passive diffusion and after electromotive drug administration (EMDA), using a two-chambered poly(vinyl chloride) diffusion cell designed and developed in our laboratory. The results obtained show that EMDA enhanced OXB penetration into bladder wall and that this novel way of local drug administration can be potentially used in patients with neurogenic bladder dysfunction or urinary incontinence.
Massoud, R., Federici, G., Casciani, S., Di Stasi, S., Fucci, P., Giannantoni, A., et al. (1999). Extraction and determination of oxybutynin in human bladder samples by reversed-phase high performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY B. BIOMEDICAL SCIENCES AND APPLICATIONS, 29, 163-167 [10.1016/S0378-4347(99)00326-6,].
Extraction and determination of oxybutynin in human bladder samples by reversed-phase high performance liquid chromatography
GIANNANTONI, Antonella;
1999-01-01
Abstract
A reversed-phase high-performance liquid chromatography method is described for the determination of oxybutynin (OXB) in human bladder samples. Following homogenization, tissue samples underwent double extraction with hexane and eventually were concentrated by freeze-drying before analysis. Chromatographic separation was performed with a mobile phase of acetonitrile-water-1 M ammonium acetate, pH 7.0 (85:13:2, v/v/v) at a flow-rate of 0.5 ml/min and double (electrochemical and UV) detection was applied. The retention time of oxybutynin eluting peak was around 18 min. Using a standard curve range of 10 to 500 ng/ml the quantification limit with electrochemical detection was 5 ng/ml with an injection volume of 100 microl. Within-day and day-to-day relative standard deviation values were 4.9 and 9.81%, respectively, while a 94% accuracy and a 72% recovery was attained. We applied this method to compare the OXB levels into bladder wall tissue samples after passive diffusion and after electromotive drug administration (EMDA), using a two-chambered poly(vinyl chloride) diffusion cell designed and developed in our laboratory. The results obtained show that EMDA enhanced OXB penetration into bladder wall and that this novel way of local drug administration can be potentially used in patients with neurogenic bladder dysfunction or urinary incontinence.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1065461
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo