This article proposes an approximate conditional dynamic finite mixture hurdle model for panel count data with excess of zeros and endogenous initial conditions. We provide parameter estimates by using the Expectation-Maximization (EM) algorithm in a Nonparametric Maximum Likelihood (NPML) framework. An application to a unique data set on traffic violation counts of a subpopulation of Italian drivers is given.

Belloc, F., Bernardi, M., Maruotti, A., Petrella, L. (2013). A Dynamic Hurdle Model for Zero-Inflated Panel Count Data. APPLIED ECONOMICS LETTERS, 20(9), 837-841 [10.1080/13504851.2012.750447].

A Dynamic Hurdle Model for Zero-Inflated Panel Count Data

Belloc F.;
2013-01-01

Abstract

This article proposes an approximate conditional dynamic finite mixture hurdle model for panel count data with excess of zeros and endogenous initial conditions. We provide parameter estimates by using the Expectation-Maximization (EM) algorithm in a Nonparametric Maximum Likelihood (NPML) framework. An application to a unique data set on traffic violation counts of a subpopulation of Italian drivers is given.
2013
Belloc, F., Bernardi, M., Maruotti, A., Petrella, L. (2013). A Dynamic Hurdle Model for Zero-Inflated Panel Count Data. APPLIED ECONOMICS LETTERS, 20(9), 837-841 [10.1080/13504851.2012.750447].
File in questo prodotto:
File Dimensione Formato  
Belloc A dynamic hurdle model for zeroinflated panel count data.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 208.03 kB
Formato Adobe PDF
208.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1064486