We define the notion of a Catalan pair, which is a pair of (strict) order relations (S, R) satisfying certain axioms. We show that Catalan pairs of size n are counted by Catalan numbers. We study some combinatorial properties of the relations R and S. In particular, we show that the second component R uniquely determines the pair, and we give a characterization of the poset R in terms of forbidden configurations. We also propose some generalizations of Catalan pairs arising from the modification of one of the axioms.

Disanto, F., Ferrari, L., Pinzani, R., Rinaldi, S. (2009). Combinatorial properties of Catalan pairs. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 34, 429-433 [10.1016/j.endm.2009.07.071].

Combinatorial properties of Catalan pairs

RINALDI, SIMONE
2009-01-01

Abstract

We define the notion of a Catalan pair, which is a pair of (strict) order relations (S, R) satisfying certain axioms. We show that Catalan pairs of size n are counted by Catalan numbers. We study some combinatorial properties of the relations R and S. In particular, we show that the second component R uniquely determines the pair, and we give a characterization of the poset R in terms of forbidden configurations. We also propose some generalizations of Catalan pairs arising from the modification of one of the axioms.
Disanto, F., Ferrari, L., Pinzani, R., Rinaldi, S. (2009). Combinatorial properties of Catalan pairs. ELECTRONIC NOTES IN DISCRETE MATHEMATICS, 34, 429-433 [10.1016/j.endm.2009.07.071].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/10628
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo