Phytosterols are stucturally correlated to the endogenous ligands of Liver X Receptor (LXR), a ligand-activated nuclear receptor that has emerged as an attractive drug target due to its ability to integrate metabolic and inflammatory signaling. Natural and semi-synthetic phytosterol derivatives characterized by the presence of side-chain oxygenated functions have shown to be able to modulate LXR activity. Here, we describe the efficient synthesis of four stigmastane derivatives, endowed with a hydroxyl group at C24 position, namely (24R)- and (24S)-stigmasta-5,28-diene-3β,24-ols (also referred to as saringosterols, 10a and 10b) and (24R)- and (24S)-stigmasta-5-ene-3β,24-ols (11a and 11b), starting from the readily available stigmasterol. Thanks to X-ray crystallography the absolute configuration of the newly created chiral centers was definitively assigned for all the four compounds. The subsequent luciferase assays with GAL-4 chimeric receptors evidenced the ability of the two 24(S)-epimers, 10b and 11b, to interact with LXRs, showing the same degree of affinity as (22R)-hydroxycholesterol (1). With regard to the isoform selectivity both the derivatives 10b and 11b showed a preference for LXRβ up to 4-fold in terms of efficacy for 11b. The gene expression profiling of (24S)-stigmasta-5,28-diene-3β,24-ol (10a) and (24S)-stigmasta-5-ene-3β,24-ol (11a) demonstrated the capability of both the compounds to induce the expression of four well-known LXR target genes, such as ABCA1, SREBP1c, FASN, and SCD1 in U937 monocytic cell line, thus supporting the hypothesis they were LXR positive modulators.
Castro Navas, F.F., Giorgi, G., Maggioni, D., Pacciarini, M., Russo, V., Marinozzi, M. (2018). C24-hydroxylated stigmastane derivatives as Liver X Receptor agonists. CHEMISTRY AND PHYSICS OF LIPIDS, 212, 44-50 [10.1016/j.chemphyslip.2018.01.005].
C24-hydroxylated stigmastane derivatives as Liver X Receptor agonists
Giorgi, Gianluca;
2018-01-01
Abstract
Phytosterols are stucturally correlated to the endogenous ligands of Liver X Receptor (LXR), a ligand-activated nuclear receptor that has emerged as an attractive drug target due to its ability to integrate metabolic and inflammatory signaling. Natural and semi-synthetic phytosterol derivatives characterized by the presence of side-chain oxygenated functions have shown to be able to modulate LXR activity. Here, we describe the efficient synthesis of four stigmastane derivatives, endowed with a hydroxyl group at C24 position, namely (24R)- and (24S)-stigmasta-5,28-diene-3β,24-ols (also referred to as saringosterols, 10a and 10b) and (24R)- and (24S)-stigmasta-5-ene-3β,24-ols (11a and 11b), starting from the readily available stigmasterol. Thanks to X-ray crystallography the absolute configuration of the newly created chiral centers was definitively assigned for all the four compounds. The subsequent luciferase assays with GAL-4 chimeric receptors evidenced the ability of the two 24(S)-epimers, 10b and 11b, to interact with LXRs, showing the same degree of affinity as (22R)-hydroxycholesterol (1). With regard to the isoform selectivity both the derivatives 10b and 11b showed a preference for LXRβ up to 4-fold in terms of efficacy for 11b. The gene expression profiling of (24S)-stigmasta-5,28-diene-3β,24-ol (10a) and (24S)-stigmasta-5-ene-3β,24-ol (11a) demonstrated the capability of both the compounds to induce the expression of four well-known LXR target genes, such as ABCA1, SREBP1c, FASN, and SCD1 in U937 monocytic cell line, thus supporting the hypothesis they were LXR positive modulators.File | Dimensione | Formato | |
---|---|---|---|
Marinozzi_2018.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
392.25 kB
Formato
Adobe PDF
|
392.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1062460