Electron diffraction tomography is a powerful emerging method for the structure characterization of materials available only as sub-micrometric grains. This technique can in fact deliver complete 3D information from a single crystal of few hundreds or few tens of nanometers, allowing the analysis of polyphasic or polytypic mixtures that generally cannot be fully addressed by X-ray methods. In this paper, we report and discuss three mineralogy-related study cases where electron diffraction tomography was the only way for achieving a proper description of the sample, by the identification and the structure determination of all the phases or all the polytypes within. We also show how electron diffraction tomography and dynamical refinement can be combined for finding accurate atomic positions and localizing hydrogen atoms at room conditions. Finally, we stress the future potential of this method in the fields of mineralogy and experimental petrology, where till now many samples cannot be properly described because nanocrystalline, polyphasic or disordered. Electron diffraction tomography can be used for detecting unexpected or unknown phases in high-pressure synthetic yields or for the characterization of fine rocks formed under extreme conditions, like impactites or meteorites. Eventually, this method allows the structure characterization of single domains that are ordered only at the scale of few cell repetitions, and therefore it makes possible investigating those materials at the borderline between crystalline and amorphous matter and delivers crucial and unique elements for the understanding of the first stages of solid matter organization.

Mugnaioli, E., Gemmi, M. (2018). Single-crystal analysis of nanodomains by electron diffraction tomography: Mineralogy at the order-disorder borderline. ZEITSCHRIFT FÜR KRISTALLOGRAPHIE. CRYSTALLINE MATERIALS, 233(3-4), 163-178 [10.1515/zkri-2017-2130].

Single-crystal analysis of nanodomains by electron diffraction tomography: Mineralogy at the order-disorder borderline

Mugnaioli, Enrico
;
2018-01-01

Abstract

Electron diffraction tomography is a powerful emerging method for the structure characterization of materials available only as sub-micrometric grains. This technique can in fact deliver complete 3D information from a single crystal of few hundreds or few tens of nanometers, allowing the analysis of polyphasic or polytypic mixtures that generally cannot be fully addressed by X-ray methods. In this paper, we report and discuss three mineralogy-related study cases where electron diffraction tomography was the only way for achieving a proper description of the sample, by the identification and the structure determination of all the phases or all the polytypes within. We also show how electron diffraction tomography and dynamical refinement can be combined for finding accurate atomic positions and localizing hydrogen atoms at room conditions. Finally, we stress the future potential of this method in the fields of mineralogy and experimental petrology, where till now many samples cannot be properly described because nanocrystalline, polyphasic or disordered. Electron diffraction tomography can be used for detecting unexpected or unknown phases in high-pressure synthetic yields or for the characterization of fine rocks formed under extreme conditions, like impactites or meteorites. Eventually, this method allows the structure characterization of single domains that are ordered only at the scale of few cell repetitions, and therefore it makes possible investigating those materials at the borderline between crystalline and amorphous matter and delivers crucial and unique elements for the understanding of the first stages of solid matter organization.
2018
Mugnaioli, E., Gemmi, M. (2018). Single-crystal analysis of nanodomains by electron diffraction tomography: Mineralogy at the order-disorder borderline. ZEITSCHRIFT FÜR KRISTALLOGRAPHIE. CRYSTALLINE MATERIALS, 233(3-4), 163-178 [10.1515/zkri-2017-2130].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1059894