The notion of succession rule (system for short) provides a powerful tool for the enumeration of many classes of combinatorial objects. Often, different systems exist for a given class of combinatorial objects, and a number of problems arise naturally. An important one is the equivalence problem between two different systems. In this paper, we show how to solve this problem in the case of systems having a particular form. More precisely, using a bijective proof, we show that the classical system defining the sequence of Catalan numbers is equivalent to a system obtained by linear combinations of labels of the first one.

Brlek, S., Duchi, E., Pergola, E., Rinaldi, S. (2005). On the equivalence problem for succession rules. DISCRETE MATHEMATICS, 298(1-3), 142-154 [10.1016/j.disc.2004.07.019].

On the equivalence problem for succession rules

RINALDI, SIMONE
2005-01-01

Abstract

The notion of succession rule (system for short) provides a powerful tool for the enumeration of many classes of combinatorial objects. Often, different systems exist for a given class of combinatorial objects, and a number of problems arise naturally. An important one is the equivalence problem between two different systems. In this paper, we show how to solve this problem in the case of systems having a particular form. More precisely, using a bijective proof, we show that the classical system defining the sequence of Catalan numbers is equivalent to a system obtained by linear combinations of labels of the first one.
2005
Brlek, S., Duchi, E., Pergola, E., Rinaldi, S. (2005). On the equivalence problem for succession rules. DISCRETE MATHEMATICS, 298(1-3), 142-154 [10.1016/j.disc.2004.07.019].
File in questo prodotto:
File Dimensione Formato  
equivalence.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 238.49 kB
Formato Adobe PDF
238.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/10531
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo