In six healthy subjects, the reflex responses of the tibialis anterior muscle (TA) to stimulation of the cutaneous afferents arising from plantar foot, were studied at rest and during different levels of steady voluntary contraction of the TA. At rest, the threshold of the response and the threshold of subjective pain sensation coincided. The mean latency of this TA nociceptive response was 84.7 ms. Steady voluntary contractions of the TA, which was increased progressively from 3% to 15% of the maximum voluntary contraction, produced a significant and parallel reduction in the threshold and latency of the response: at 15%, the mean latency was about 26 ms shorter than at rest and its threshold was about half (i.e. below the pain threshold). The conduction velocity of the afferents responsible for TA response at rest was within the range of A-delta pain afferents (mean 27.4 m/s), whereas during voluntary contraction it was within the A-beta fibre range (mean 45.1 m/s). This suggests that descending command makes the discharge of low-threshold, fast-conducting fibres sufficient for reflex activation of TA motoneurones (MNs). Central delay (about 4 ms) and MN recruitment order (according to the size principle) were found to be the same for both nociceptive and non-nociceptive TA reflex responses. Finally, experiments of spatial summation revealed an interaction between nociceptive and non-nociceptive inputs at a premotoneuronal level. It is therefore proposed that nociceptive and non-nociceptive cutaneous afferents arising from the foot sole use the same short-latency spinal pathway to contact TA MNs and that their relative contribution to its segmental activation is contingent upon descending command.

Rossi, A., Zalaffi, A., Decchi, B. (1996). Interaction of nociceptive and non-nociceptive cutaneous afferents from foot sole in common reflex pathways to tibialis anterior motoneurones in humans. BRAIN RESEARCH, 76-86.

Interaction of nociceptive and non-nociceptive cutaneous afferents from foot sole in common reflex pathways to tibialis anterior motoneurones in humans.

Rossi A;Zalaffi A;
1996-01-01

Abstract

In six healthy subjects, the reflex responses of the tibialis anterior muscle (TA) to stimulation of the cutaneous afferents arising from plantar foot, were studied at rest and during different levels of steady voluntary contraction of the TA. At rest, the threshold of the response and the threshold of subjective pain sensation coincided. The mean latency of this TA nociceptive response was 84.7 ms. Steady voluntary contractions of the TA, which was increased progressively from 3% to 15% of the maximum voluntary contraction, produced a significant and parallel reduction in the threshold and latency of the response: at 15%, the mean latency was about 26 ms shorter than at rest and its threshold was about half (i.e. below the pain threshold). The conduction velocity of the afferents responsible for TA response at rest was within the range of A-delta pain afferents (mean 27.4 m/s), whereas during voluntary contraction it was within the A-beta fibre range (mean 45.1 m/s). This suggests that descending command makes the discharge of low-threshold, fast-conducting fibres sufficient for reflex activation of TA motoneurones (MNs). Central delay (about 4 ms) and MN recruitment order (according to the size principle) were found to be the same for both nociceptive and non-nociceptive TA reflex responses. Finally, experiments of spatial summation revealed an interaction between nociceptive and non-nociceptive inputs at a premotoneuronal level. It is therefore proposed that nociceptive and non-nociceptive cutaneous afferents arising from the foot sole use the same short-latency spinal pathway to contact TA MNs and that their relative contribution to its segmental activation is contingent upon descending command.
1996
Rossi, A., Zalaffi, A., Decchi, B. (1996). Interaction of nociceptive and non-nociceptive cutaneous afferents from foot sole in common reflex pathways to tibialis anterior motoneurones in humans. BRAIN RESEARCH, 76-86.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1052302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo