We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset.

Disanto, F., Ferrari, L., Rinaldi, S. (2017). A partial order structure on interval orders. UTILITAS MATHEMATICA, 102, 135-147.

A partial order structure on interval orders

Rinaldi, Simone
2017-01-01

Abstract

We introduce a partial order structure on the set of interval orders of a given size, and prove that such a structure is in fact a lattice. We also provide a way to compute meet and join inside this lattice. Finally, we show that, if we restrict to series parallel interval order, what we obtain is the classical Tamari poset.
2017
Disanto, F., Ferrari, L., Rinaldi, S. (2017). A partial order structure on interval orders. UTILITAS MATHEMATICA, 102, 135-147.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1035007