Ultrafast processes in light-absorbing proteins have been implicated in the primary step in the light-to-energy conversion and the initialization of photoresponsive biological functions. Theory and computations have played an instrumental role in understanding the molecular mechanism of such processes, as they provide a molecular-level insight of structural and electronic changes at ultrafast time scales that often are very difficult or impossible to obtain from experiments alone. Among theoretical strategies, the application of hybrid quantum mechanics and molecular mechanics (QM/MM) models is an important approach that has reached an evident degree of maturity, resulting in several important contributions to the field. This review presents an overview of state-of-the-art computational studies on subnanosecond events in rhodopsins, photoactive yellow proteins, phytochromes, and some other photoresponsive proteins where photoinduced double-bond isomerization occurs. The review also discusses current limitations that need to be solved in future developments.
Gozem, S., Luk, H.L., Schapiro, I., Olivucci, M. (2017). Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. CHEMICAL REVIEWS, 117(22), 13502-13565 [10.1021/acs.chemrev.7b00177].
Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores
Olivucci, Massimo
2017-01-01
Abstract
Ultrafast processes in light-absorbing proteins have been implicated in the primary step in the light-to-energy conversion and the initialization of photoresponsive biological functions. Theory and computations have played an instrumental role in understanding the molecular mechanism of such processes, as they provide a molecular-level insight of structural and electronic changes at ultrafast time scales that often are very difficult or impossible to obtain from experiments alone. Among theoretical strategies, the application of hybrid quantum mechanics and molecular mechanics (QM/MM) models is an important approach that has reached an evident degree of maturity, resulting in several important contributions to the field. This review presents an overview of state-of-the-art computational studies on subnanosecond events in rhodopsins, photoactive yellow proteins, phytochromes, and some other photoresponsive proteins where photoinduced double-bond isomerization occurs. The review also discusses current limitations that need to be solved in future developments.File | Dimensione | Formato | |
---|---|---|---|
Gozem et al 2017 904.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
19.58 MB
Formato
Adobe PDF
|
19.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.89 MB
Formato
Adobe PDF
|
4.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1033779