We demonstrate high-contrast electromagnetically induced absorption (EIA) bright resonances on the D1 line of K39 with characteristics comparable to those of the electromagnetically induced transparency (EIT) dark resonances observed in the same conditions. EIA is produced by the interaction of a weak probe beam with the atomic ground state driven in a degenerate coherent superposition by either a co- or counter-propagating pump beam. We have obtained an order of magnitude increase of the EIA's contrast with respect to previous similar experiments, performed with other alkalis, without compromising its linewidth. Furthermore, we show that the magneto-optic resonances can be continuously tuned from EIT to EIA by changing the relative handedness of circular polarizations of pump and probe beams, or depending on whether they co- or counter-propagate. This opens new perspectives in the use of EIA in a broad range of physical domains and in a large wealth of potential applications in optics and photonics.

Gozzini, S., Fioretti, A., Lucchesini, A., Marmugi, L., Marinelli, C., Tsvetkov, S., et al. (2017). Tunable and polarization-controlled high-contrast bright and dark coherent resonances in potassium. OPTICS LETTERS, 42(15), 2930-2933 [10.1364/OL.42.002930].

Tunable and polarization-controlled high-contrast bright and dark coherent resonances in potassium

Marmugi, Luca
;
Marinelli, Carmela;
2017-01-01

Abstract

We demonstrate high-contrast electromagnetically induced absorption (EIA) bright resonances on the D1 line of K39 with characteristics comparable to those of the electromagnetically induced transparency (EIT) dark resonances observed in the same conditions. EIA is produced by the interaction of a weak probe beam with the atomic ground state driven in a degenerate coherent superposition by either a co- or counter-propagating pump beam. We have obtained an order of magnitude increase of the EIA's contrast with respect to previous similar experiments, performed with other alkalis, without compromising its linewidth. Furthermore, we show that the magneto-optic resonances can be continuously tuned from EIT to EIA by changing the relative handedness of circular polarizations of pump and probe beams, or depending on whether they co- or counter-propagate. This opens new perspectives in the use of EIA in a broad range of physical domains and in a large wealth of potential applications in optics and photonics.
Gozzini, S., Fioretti, A., Lucchesini, A., Marmugi, L., Marinelli, C., Tsvetkov, S., et al. (2017). Tunable and polarization-controlled high-contrast bright and dark coherent resonances in potassium. OPTICS LETTERS, 42(15), 2930-2933 [10.1364/OL.42.002930].
File in questo prodotto:
File Dimensione Formato  
ol-42-15-2930.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Gozzini_et_al-Preprint.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1029921