We introduce the class of transparent embeddings for a point-line geometry Γ=(P,L) as the class of full projective embeddings ε of Γ such that the preimage of any projective line fully contained in ε(P) is a line of Γ. We will then investigate the transparency of Plücker embeddings of projective and polar grassmannians and spin embeddings of half-spin geometries and dual polar spaces of orthogonal type. As an application of our results on transparency, we will derive several Chow-like theorems for polar grassmannians and half-spin geometries.

Cardinali, I., Giuzzi, L., Pasini, A. (2018). On transparent embeddings of point-line geometries. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 155, 190-224 [10.1016/j.jcta.2017.11.001].

On transparent embeddings of point-line geometries

Cardinali, Ilaria;Pasini, Antonio
2018-01-01

Abstract

We introduce the class of transparent embeddings for a point-line geometry Γ=(P,L) as the class of full projective embeddings ε of Γ such that the preimage of any projective line fully contained in ε(P) is a line of Γ. We will then investigate the transparency of Plücker embeddings of projective and polar grassmannians and spin embeddings of half-spin geometries and dual polar spaces of orthogonal type. As an application of our results on transparency, we will derive several Chow-like theorems for polar grassmannians and half-spin geometries.
Cardinali, I., Giuzzi, L., Pasini, A. (2018). On transparent embeddings of point-line geometries. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 155, 190-224 [10.1016/j.jcta.2017.11.001].
File in questo prodotto:
File Dimensione Formato  
Transparent-JCTA-rev1.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 421.57 kB
Formato Adobe PDF
421.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1029549