Given a function u : OMEGA subset-or-equal-to --> R, we introduce a notion of total variation of u depending on a possibly discontinuous Finsler metric. We prove some integral representation results for this total variation, and we study the connections with the theory of relaxation.
Amar, M., Bellettini, G. (1994). A notion of total variation depending on a metric with discontinuous coefficients. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 11(1), 91-133.
A notion of total variation depending on a metric with discontinuous coefficients
Bellettini, G.
1994-01-01
Abstract
Given a function u : OMEGA subset-or-equal-to --> R, we introduce a notion of total variation of u depending on a possibly discontinuous Finsler metric. We prove some integral representation results for this total variation, and we study the connections with the theory of relaxation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Amar-Bellettini_94.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.92 MB
Formato
Adobe PDF
|
2.92 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1017502