Given a function u : OMEGA subset-or-equal-to --> R, we introduce a notion of total variation of u depending on a possibly discontinuous Finsler metric. We prove some integral representation results for this total variation, and we study the connections with the theory of relaxation.

Amar, M., Bellettini, G. (1994). A notion of total variation depending on a metric with discontinuous coefficients. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 11(1), 91-133.

A notion of total variation depending on a metric with discontinuous coefficients

Bellettini, G.
1994-01-01

Abstract

Given a function u : OMEGA subset-or-equal-to --> R, we introduce a notion of total variation of u depending on a possibly discontinuous Finsler metric. We prove some integral representation results for this total variation, and we study the connections with the theory of relaxation.
1994
Amar, M., Bellettini, G. (1994). A notion of total variation depending on a metric with discontinuous coefficients. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 11(1), 91-133.
File in questo prodotto:
File Dimensione Formato  
Amar-Bellettini_94.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017502