In this paper, we generalize to arbitrary dimensions a one-dimensional equicoerciveness and Γ-convergence result for a second derivative perturbation of Perona-Malik type functionals. Our proof relies on a new density result in the space of special functions of bounded variation with vanishing diffuse gradient part. This provides a direction of investigation to derive approximation for functionals with discontinuities penalized with a «cohesive» energy, that is, whose cost depends on the actual opening of the discontinuity.

Bellettini, G., Chambolle, A., Goldman, M. (2014). The Gamma-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 24(6), 1091-1113 [10.1142/S0218202513500772].

The Gamma-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension

BELLETTINI, GIOVANNI;
2014-01-01

Abstract

In this paper, we generalize to arbitrary dimensions a one-dimensional equicoerciveness and Γ-convergence result for a second derivative perturbation of Perona-Malik type functionals. Our proof relies on a new density result in the space of special functions of bounded variation with vanishing diffuse gradient part. This provides a direction of investigation to derive approximation for functionals with discontinuities penalized with a «cohesive» energy, that is, whose cost depends on the actual opening of the discontinuity.
2014
Bellettini, G., Chambolle, A., Goldman, M. (2014). The Gamma-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 24(6), 1091-1113 [10.1142/S0218202513500772].
File in questo prodotto:
File Dimensione Formato  
2014_Bellettini_Chambolle_Goldman_M3AS.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 352.96 kB
Formato Adobe PDF
352.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017500