In this paper, we study the minimizing total variation flow u(t) = div(Du/DU) in R-N for initial data u(0) in L-loc(1)(R-N), proving an existence and uniqueness result. Then we characterize all bounded sets Omega of finite perimeter in R-2 which evolve without distortion of the boundary. In that case, no = chi(Omega) evolves as u(t, x) = (1 - lambda(Omega)t)(+) chi(Omega),, where chi(Omega) is the characteristic function of Omega, lambda(Omega) := P(Omega)/Omega, and P(Omega) denotes the perimeter of Omega. We give examples of such sets. The solutions are such that upsilon := lambda(Omega)chi(Omega) solves the eigenvalue problem -div(Dupsilon/Dupsilon) = upsilon. We construct other explicit solutions of this problem. As an application, we construct explicit solutions of the denoising problem in image processing. (C) 2002 Elsevier Science (USA).

Bellettini, G., Caselles, V., Novaga, M. (2002). The total variation flow in Rn. JOURNAL OF DIFFERENTIAL EQUATIONS, 184(2), 475-525 [10.1006/jdeq.2001.4150].

The total variation flow in Rn

BELLETTINI, GIOVANNI;
2002-01-01

Abstract

In this paper, we study the minimizing total variation flow u(t) = div(Du/DU) in R-N for initial data u(0) in L-loc(1)(R-N), proving an existence and uniqueness result. Then we characterize all bounded sets Omega of finite perimeter in R-2 which evolve without distortion of the boundary. In that case, no = chi(Omega) evolves as u(t, x) = (1 - lambda(Omega)t)(+) chi(Omega),, where chi(Omega) is the characteristic function of Omega, lambda(Omega) := P(Omega)/Omega, and P(Omega) denotes the perimeter of Omega. We give examples of such sets. The solutions are such that upsilon := lambda(Omega)chi(Omega) solves the eigenvalue problem -div(Dupsilon/Dupsilon) = upsilon. We construct other explicit solutions of this problem. As an application, we construct explicit solutions of the denoising problem in image processing. (C) 2002 Elsevier Science (USA).
2002
Bellettini, G., Caselles, V., Novaga, M. (2002). The total variation flow in Rn. JOURNAL OF DIFFERENTIAL EQUATIONS, 184(2), 475-525 [10.1006/jdeq.2001.4150].
File in questo prodotto:
File Dimensione Formato  
2002_Bellettini_Caselles_Novaga_J_Differential_Equations.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 485.36 kB
Formato Adobe PDF
485.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017473