Let I ⊂ ℝ be a bounded open interval, (I) be the family of all open subintervals of I and let p > 1. The aim of this paper is to give an integral representation result for abstract functionals F: W1,p(I;ℝn) × (I) → [0, + ∞) which are lower semicontinuous and satisfy suitable properties. In particular, we prove an integral representation theorem for the Г-limit of a sequence {Fh}h, of functionals of the form S0308210500012749_eqnU1 where each fh is a Borel function satisfying proper growth conditions

Amar, M., Bellettini, G., Venturini, S. (1998). Integral representation of functionals defined on curves of W^1,p. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 128(2), 193-217 [10.1017/S0308210500012749].

Integral representation of functionals defined on curves of W^1,p

Bellettini, Giovanni;
1998-01-01

Abstract

Let I ⊂ ℝ be a bounded open interval, (I) be the family of all open subintervals of I and let p > 1. The aim of this paper is to give an integral representation result for abstract functionals F: W1,p(I;ℝn) × (I) → [0, + ∞) which are lower semicontinuous and satisfy suitable properties. In particular, we prove an integral representation theorem for the Г-limit of a sequence {Fh}h, of functionals of the form S0308210500012749_eqnU1 where each fh is a Borel function satisfying proper growth conditions
1998
Amar, M., Bellettini, G., Venturini, S. (1998). Integral representation of functionals defined on curves of W^1,p. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 128(2), 193-217 [10.1017/S0308210500012749].
File in questo prodotto:
File Dimensione Formato  
1998_Amar_Bellettini_Venturini_Edinburgh.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.38 MB
Formato Adobe PDF
6.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017464