We study the curvature flow of planar nonconvex lens-shaped domains, considered as special symmetric networks with two triple junctions. We show that the evolving domain becomes convex in finite time; then it shrinks homothetically to a point. Our theorem is the analog of the result of Grayson for curvature flow of closed planar embedded curves.
Bellettini, G., Novaga, M. (2011). Curvature evolution of nonconvex lens-shaped domains. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 656, 17-46 [10.1515/CRELLE.2011.041].
Curvature evolution of nonconvex lens-shaped domains
Bellettini, Giovanni;
2011-01-01
Abstract
We study the curvature flow of planar nonconvex lens-shaped domains, considered as special symmetric networks with two triple junctions. We show that the evolving domain becomes convex in finite time; then it shrinks homothetically to a point. Our theorem is the analog of the result of Grayson for curvature flow of closed planar embedded curves.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2011_Bellettini_Novaga_J_Reine_Angew_Math.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
328.92 kB
Formato
Adobe PDF
|
328.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1017454