We study some properties of De Giorgi's minimal barriers and local minimal barriers for geometric flows of subsets of R-n. Concerning evolutions of the form partial derivative u/partial derivative t + F(del u, del(2)u) = 0, we prove a representation result for the minimal barrier M(E, F-F) when F is not degenerate elliptic; namely, we show that M(E, F-F) = M(E, FF+), where F+ is the smallest degenerate elliptic function above F. We also characterize the disjoint sets property and the joint sets property in terms of the Function F. (C) 1997 Academic Press.

Bellettini, G., Novaga, M. (1997). Minimal barriers for geometric evolutions. JOURNAL OF DIFFERENTIAL EQUATIONS, 139(1), 76-103 [10.1006/jdeq.1997.3288].

Minimal barriers for geometric evolutions

BELLETTINI, GIOVANNI;
1997-01-01

Abstract

We study some properties of De Giorgi's minimal barriers and local minimal barriers for geometric flows of subsets of R-n. Concerning evolutions of the form partial derivative u/partial derivative t + F(del u, del(2)u) = 0, we prove a representation result for the minimal barrier M(E, F-F) when F is not degenerate elliptic; namely, we show that M(E, F-F) = M(E, FF+), where F+ is the smallest degenerate elliptic function above F. We also characterize the disjoint sets property and the joint sets property in terms of the Function F. (C) 1997 Academic Press.
1997
Bellettini, G., Novaga, M. (1997). Minimal barriers for geometric evolutions. JOURNAL OF DIFFERENTIAL EQUATIONS, 139(1), 76-103 [10.1006/jdeq.1997.3288].
File in questo prodotto:
File Dimensione Formato  
1997_Bellettini_Novaga_J_Differential_Equations.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 420.09 kB
Formato Adobe PDF
420.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017436