We study some properties of De Giorgi's minimal barriers and local minimal barriers for geometric flows of subsets of R-n. Concerning evolutions of the form partial derivative u/partial derivative t + F(del u, del(2)u) = 0, we prove a representation result for the minimal barrier M(E, F-F) when F is not degenerate elliptic; namely, we show that M(E, F-F) = M(E, FF+), where F+ is the smallest degenerate elliptic function above F. We also characterize the disjoint sets property and the joint sets property in terms of the Function F. (C) 1997 Academic Press.
Bellettini, G., Novaga, M. (1997). Minimal barriers for geometric evolutions. JOURNAL OF DIFFERENTIAL EQUATIONS, 139(1), 76-103 [10.1006/jdeq.1997.3288].
Minimal barriers for geometric evolutions
BELLETTINI, GIOVANNI;
1997-01-01
Abstract
We study some properties of De Giorgi's minimal barriers and local minimal barriers for geometric flows of subsets of R-n. Concerning evolutions of the form partial derivative u/partial derivative t + F(del u, del(2)u) = 0, we prove a representation result for the minimal barrier M(E, F-F) when F is not degenerate elliptic; namely, we show that M(E, F-F) = M(E, FF+), where F+ is the smallest degenerate elliptic function above F. We also characterize the disjoint sets property and the joint sets property in terms of the Function F. (C) 1997 Academic Press.File | Dimensione | Formato | |
---|---|---|---|
1997_Bellettini_Novaga_J_Differential_Equations.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
420.09 kB
Formato
Adobe PDF
|
420.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1017436