We link covering spaces with the theory of functions of bounded variation, in order to study minimal networks in the plane and Plateau's problem without fixing a priori the topology of solutions. We solve the minimization problem in the class of (possibly vector-valued) BV functions defined on a covering space of the complement of an (n -2)-dimensional compact embedded Lipschitz manifold S without boundary. This approach has several similarities with Brakke's "soap films" covering construction. The main novelty of our method stands in the presence of a suitable constraint on the fibers, which couples together the covering sheets. In the case of networks, the constraint is defined using a suitable subset of transpositions of m elements, m being the number of points of S. The model avoids all issues concerning the presence of the boundary S, which is automatically attained. The constraint is lifted in a natural way to Sobolev spaces, allowing also an approach based on Γ-convergence.

Amato, S., Bellettini, G., Paolini, M. (2017). Constrained BV functions on covering spaces for minimal networks and Plateau's type problems. ADVANCES IN CALCULUS OF VARIATIONS, 10(1), 25-47 [10.1515/acv-2015-0021].

Constrained BV functions on covering spaces for minimal networks and Plateau's type problems

Bellettini, Giovanni;
2017-01-01

Abstract

We link covering spaces with the theory of functions of bounded variation, in order to study minimal networks in the plane and Plateau's problem without fixing a priori the topology of solutions. We solve the minimization problem in the class of (possibly vector-valued) BV functions defined on a covering space of the complement of an (n -2)-dimensional compact embedded Lipschitz manifold S without boundary. This approach has several similarities with Brakke's "soap films" covering construction. The main novelty of our method stands in the presence of a suitable constraint on the fibers, which couples together the covering sheets. In the case of networks, the constraint is defined using a suitable subset of transpositions of m elements, m being the number of points of S. The model avoids all issues concerning the presence of the boundary S, which is automatically attained. The constraint is lifted in a natural way to Sobolev spaces, allowing also an approach based on Γ-convergence.
2017
Amato, S., Bellettini, G., Paolini, M. (2017). Constrained BV functions on covering spaces for minimal networks and Plateau's type problems. ADVANCES IN CALCULUS OF VARIATIONS, 10(1), 25-47 [10.1515/acv-2015-0021].
File in questo prodotto:
File Dimensione Formato  
bellettini 2017.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017426