We study the convergence of the singularly perturbed anisotropic, nonhomogeneous reaction-diffusion equation epsilon partial derivative(t)u - epsilon(2) div T degrees(x,del u) + f(u) - epsilon(c(1)/c(0))g = 0, where f is the derivative of a bistable quartic-like potential with unequal wells, T degrees(x,) is a nonlinear monotone operator homogeneous of degree one and g is a given forcing term. More precisely, we prove that an appropriate level set of the solution satisfies an O(epsilon(3)\log epsilon\(2)) error bound (in the Hausdorff distance) with respect to a hypersurface moving with the geometric law V = (c - epsilon kappa(phi))n(phi) + g-dependent terms, where n(phi) is the so-called Cahn-Hoffmann vector and kappa(phi) denotes the anisotropic mean curvature of the hypersurface. We also discuss the connection between the anisotropic reaction-diffusion equation and the bidomain model, which is described by a system of equations modeling the propagation of an electric stimulus in the cardiac tissue.
Bellettini, G., Colli Franzone, P., Paolini, M. (1997). Convergence of front propagation for anisotropic bistable reaction-diffusion equations. ASYMPTOTIC ANALYSIS, 15(3-4), 325-358 [10.3233/asy-1997-153-406].
Convergence of front propagation for anisotropic bistable reaction-diffusion equations
Bellettini, Giovanni;
1997-01-01
Abstract
We study the convergence of the singularly perturbed anisotropic, nonhomogeneous reaction-diffusion equation epsilon partial derivative(t)u - epsilon(2) div T degrees(x,del u) + f(u) - epsilon(c(1)/c(0))g = 0, where f is the derivative of a bistable quartic-like potential with unequal wells, T degrees(x,) is a nonlinear monotone operator homogeneous of degree one and g is a given forcing term. More precisely, we prove that an appropriate level set of the solution satisfies an O(epsilon(3)\log epsilon\(2)) error bound (in the Hausdorff distance) with respect to a hypersurface moving with the geometric law V = (c - epsilon kappa(phi))n(phi) + g-dependent terms, where n(phi) is the so-called Cahn-Hoffmann vector and kappa(phi) denotes the anisotropic mean curvature of the hypersurface. We also discuss the connection between the anisotropic reaction-diffusion equation and the bidomain model, which is described by a system of equations modeling the propagation of an electric stimulus in the cardiac tissue.File | Dimensione | Formato | |
---|---|---|---|
1997_Bellettini_ColliFranzone_Paolini_Asympt_Anal-1-17.pdf
non disponibili
Descrizione: p. 1-17
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
7.39 MB
Formato
Adobe PDF
|
7.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1997_Bellettini_ColliFranzone_Paolini_Asympt_Anal-18-34.pdf
non disponibili
Descrizione: p. 18-34
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
6.71 MB
Formato
Adobe PDF
|
6.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1017421