We study the convergence of the singularly perturbed anisotropic, nonhomogeneous reaction-diffusion equation epsilon partial derivative(t)u - epsilon(2) div T degrees(x,del u) + f(u) - epsilon(c(1)/c(0))g = 0, where f is the derivative of a bistable quartic-like potential with unequal wells, T degrees(x,) is a nonlinear monotone operator homogeneous of degree one and g is a given forcing term. More precisely, we prove that an appropriate level set of the solution satisfies an O(epsilon(3)\log epsilon\(2)) error bound (in the Hausdorff distance) with respect to a hypersurface moving with the geometric law V = (c - epsilon kappa(phi))n(phi) + g-dependent terms, where n(phi) is the so-called Cahn-Hoffmann vector and kappa(phi) denotes the anisotropic mean curvature of the hypersurface. We also discuss the connection between the anisotropic reaction-diffusion equation and the bidomain model, which is described by a system of equations modeling the propagation of an electric stimulus in the cardiac tissue.

Bellettini, G., Colli Franzone, P., Paolini, M. (1997). Convergence of front propagation for anisotropic bistable reaction-diffusion equations. ASYMPTOTIC ANALYSIS, 15(3-4), 325-358 [10.3233/asy-1997-153-406].

Convergence of front propagation for anisotropic bistable reaction-diffusion equations

Bellettini, Giovanni;
1997-01-01

Abstract

We study the convergence of the singularly perturbed anisotropic, nonhomogeneous reaction-diffusion equation epsilon partial derivative(t)u - epsilon(2) div T degrees(x,del u) + f(u) - epsilon(c(1)/c(0))g = 0, where f is the derivative of a bistable quartic-like potential with unequal wells, T degrees(x,) is a nonlinear monotone operator homogeneous of degree one and g is a given forcing term. More precisely, we prove that an appropriate level set of the solution satisfies an O(epsilon(3)\log epsilon\(2)) error bound (in the Hausdorff distance) with respect to a hypersurface moving with the geometric law V = (c - epsilon kappa(phi))n(phi) + g-dependent terms, where n(phi) is the so-called Cahn-Hoffmann vector and kappa(phi) denotes the anisotropic mean curvature of the hypersurface. We also discuss the connection between the anisotropic reaction-diffusion equation and the bidomain model, which is described by a system of equations modeling the propagation of an electric stimulus in the cardiac tissue.
1997
Bellettini, G., Colli Franzone, P., Paolini, M. (1997). Convergence of front propagation for anisotropic bistable reaction-diffusion equations. ASYMPTOTIC ANALYSIS, 15(3-4), 325-358 [10.3233/asy-1997-153-406].
File in questo prodotto:
File Dimensione Formato  
1997_Bellettini_ColliFranzone_Paolini_Asympt_Anal-1-17.pdf

non disponibili

Descrizione: p. 1-17
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.39 MB
Formato Adobe PDF
7.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1997_Bellettini_ColliFranzone_Paolini_Asympt_Anal-18-34.pdf

non disponibili

Descrizione: p. 18-34
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.71 MB
Formato Adobe PDF
6.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1017421